ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 5, pp. 167-178

Zonal features of changes in snow storage of East European Plain (according to satellite observations)

L.M. Kitaev 1 , T.B. Titkova 1 
1 Institute of Geography RAS, Moscow, Russia
Accepted: 22.09.2020
DOI: 10.21046/2070-7401-2020-17-5-167-178
The features of zonal variability of snow storages of the East European Plain have been specified for the last two decades. Averaged over the zones, they decrease from the tundra, forest-tundra and taiga to the steppe zone against the background of a zonal increase in air temperature and precipitation with maximum in the forest zone. The error of zonal snow storages recovered from satellite data relative to the factual storages is 14–29 % with the maximum error in the forest-steppe and steppe zones. The variability of the long-term series of the recovered snow reserves everywhere exceeds the variability of their factual values. The correlation coefficient of the long-term course of the restored and factual snow reserves is maximal in forest zone (0.63–0.69). Long-term trends are everywhere negative and insignificant; decrease according to the trend line for the period 2000–2019 to restored snow storages is faster in comparison with decrease in factual snow storages. Spatial distribution of the recovered and factual snow storages variability characteristics is similar. The contribution of air temperature to the long-term variability of both recovered and factual snow storages exceeds the contribution of precipitation. The considered hypothesis about the possibility of using NDVI values to assess the contribution of vegetation to zonal differences in snow storages is recognized as unlikely, due to the ambiguity of statistical dependencies. As a result, when the absolute values are different, the snow storages recovered from satellite data and snow storages observed at meteorological stations have the similarity of long-term zonal variability and spatial distribution.
Keywords: restored and actual snow reserves, surface air temperature, precipitation, NDVI, zonal variability, long-term trends, interannual variability, regression analysis
Full text

References:

  1. Isachenko A. G., Shlyapnikov A. A., Landshafty (Landscapes), Moscow: Mysl’, 1989, 605 p.
  2. Kitaev L. M., Statisticheskii analiz raspredeleniya kharakteristik snezhnogo pokrova Kurskoi model’noi oblasti (Statistical analysis of the distribution of snow cover characteristics in the Kursk model region), Materialy meteorologicheskikh issledovanii, 1998, No. 16, pp. 65–72.
  3. Kitaev L. M., Kryuger O., Sherstyukov B. G., Khobe Kh., Priznaki vliyaniya rastitel’nosti na raspredelenie snezhnogo pokrova (Signs of the influence of vegetation on the distribution of snow cover), Meteorologiya i gidrologiya, 2005, No. 7, pp. 61–69.
  4. Kitaev L. M., Ableeva V. A., Asainova Zh.A., Vliyanie lesnoi rastitel’nosti na tendentsii lokal’noi izmenchivosti snegozapasov (The influence of forest vegetation on trends in local variability of snow storage), Trudy Prioksko-Terrasnogo zapovednika, Vol. 6, Tula: Izd. Akvarius, 2015, pp. 67–77.
  5. Kotlyakov V. M., Glyatsiologicheskii slovar’ (Glaciologica dictionary), Leningrad: Gidrometeoizdat, 1984, 526 p.
  6. Mishon V. M., Teoreticheskie i metodicheskie osnovy otsenki resursov poverkhnostnykh vod v zonakh nedostatochnogo i neustoichivogo uvlazhneniya Evropeiskoi chasti Rossii: Avtoref. diss. dokt. geogr. nauk (Theoretical and methodological foundations for assessing surface water resources in areas of insufficient and unstable humidification of the European part of Russia, Ext. abstract Doct. geogr. sci. thesis), Voronezh: Izd. Voronezhckogo gosudarstvennogo universiteta, 2007, 242 p.
  7. Panov V. I., Poteri snega na vetro-metel’nuyu sublimatsiyu i snos v otkrytykh i lesomeliorirovannykh agrolandshaftakh stepnoi zony (Snow loss due to wind-broom sublimation and demolition in open and fo­rest-reclaimed agrolandscapes of the steppe zone), Nauchno-agronomicheskii zhurnal, 2016, No. 2(99), pp. 10–12.
  8. Titkova T. B., Vinogradova V. V., Otklik rastitel’nosti na izmenenie klimaticheskikh uslovii v boreal’nykh i subarkticheskikh landshaftakh v nachale XXI veka (The response of vegetation to changes in climatic conditions in boreal and subarctic landscapes at the beginning of the XXI century), Sovremennye problemy distancionnogo zondirovanija Zemli iz kosmosa, 2015, Vol. 12, No. 3, pp. 75–86.
  9. Tsepelev V. Yu., Panidi E. A., Torlopova N. V., Bobkov A. A., Ispol’zovanie kharakteristik rastitel’nogo pokrova taezhnoi zony dlya monitoringa klimaticheskikh izmenenii XXI v. (Using the characteristics of the vegetation cover of the taiga zone for monitoring of climate changes in the XXI century), Uchenye zapiski Rossiiskogo gosudarstvennogo gidrometeorologicheskogo universiteta, 2015, Vol. 40, pp. 221–235.
  10. Beck P. S. Atzberger C., Høgda K. A., Bernt Johansen B., Skidmore Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI, Remote Sensing of Environment, 2006, Vol. 100, pp. 321–334.
  11. Fierz Ch., Field observation and modelling of weak-layer evolution, Annals of Glaciology, 1998, Vol. 26, pp. 7–13.
  12. Koenig L. S., Forster R. R., Evaluation of passive microwave snow water equivalent algorithms in the depth hoar-dominated snowpack of the Kuparuk River watershed, Alaska, USA, Remote Sensing of Environment, 2004, Vol. 93, pp. 511–527.
  13. Krankina O. N., Pflugmacher D., Hayes D. J., McGuire A. D., Hansen M. C., Hame T., Elsakov V., Nelson P., Vegetation Cover in the Eurasian Arctic: distribution, monitoring, and role in carbon cycling, Eurasian arctic land cover and land use in a changing climate, Springer International Publishing, 2010, pp. 79–108.
  14. Kruopis N., Praks J., Arslan A. N., Alasalmi H., Koskinen J., Hallikainen M., Passive microwave measure­ments of snow-covered forest areas in EMAC’95, IEEE Trans. Geoscience and Remote Sensing, 1999, Vol. 37, pp. 2699–2705.
  15. Metsämäki S., Anttila S., Huttunen M., Vepsäläinen J., A feasible method for fractional snow cover mapping in boreal zone based on a reflectance model, Remote Sensing of Environment, 1995, Vol. 95(1), pp. 77–95.
  16. Pulliainen J., Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations, Remote Sensing of Environment, 2006, Vol. 101, pp. 257–269.