ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 5, pp. 181-190

Streamflow response of the Ural River to basin snow depth changes during 2001–2019

A.G. Terekhov 1, 2 , N.I. Ivkina 2 , N.N. Abayev 2, 3 , A.V. Galayeva 2 , A.G. Yeltay 3 
1 Institute of Information and Computing Technology MES RK, Almaty, Kazakhstan
2 RSE Kazhydromet, Almaty, Kazakhstan
3 al-Farabi Kazakh National University, Almaty, Kazakhstan
Accepted: 05.08.2020
DOI: 10.21046/2070-7401-2020-17-5-181-190
The paper considers the transboundary runoff of the Ural River (Russia – Kazakhstan), which flows into the Caspian Sea. The Ural River is mainly snow-fed. The average annual river flow in Kazakhstan at the Kushum gauging station is about 9 km3. The relationship between the annual Ural River outflow and the average snow depth in its basin was studied. The daily product Snow Depth FEWS NET for the period 2001–2019 was used. It is shown that if several years with abnormal weather conditions are excluded from consideration, the average snow cover depth in the Ural River basin in the period from March 1 to April 15 is closely related to the annual river runoff, the coefficient of determination is 0.889. In the period from 2001 to 2019, abnormal weather conditions were in 2002, 2004, 2007, 2010 and 2011, of which 2002 and 2004 were characterized by increased volumes of annual river runoff compared to the expected level, and 2007, 2010, 2011 by decreased volumes. The severe drought of 2010 was the obvious reason for the understatement of the Ural River outflow in 2010 and 2011. The forecast of the annual outflow for 2020 based on the average snow depth derived by Snow Depth FEWS NET in its basin indicates the expected low-water season. The forecast volume of annual runoff in 2020 is 3.1±1.1 km3.
Keywords: Ural River basin, snow depth, Snow Depth FEWS NET, annual river outflow, linear regression, annual river outflow forecast
Full text

References:

  1. Ginzburg A. I., Kostianoy A. G., Tendentsii izmenenii gidrometeorologicheskikh parametrov Kaspiiskogo morya v sovremennyi period (1990-e – 2017 gg.) (Tendencies of changes in hydrometeorological parameters of the Caspian Sea in the modern period (1990s – 2017)), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 7, pp. 195–207, DOI: 10.21046/2070-7401-2018-15-7-195-207.
  2. Zakharov A. I., Zakharova L. N., Nablyudeniya dinamiki snezhnogo pokrova na radarnykh interferogrammakh L-diapazona (Observation of snow cover dynamics on L-band SAR interferograms), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 7, pp. 190–197, DOI: 10.21046/2070-7401-2017-14-7-190-197.
  3. Kitaev L. M., Tikhonov V. V., Titkova T. B., Tochnost’ vosproizvedeniya po sputnikovym dannym anomal’nykh znachenii snegozapasov (The accuracy of snow water equivalent anomalies retrieval from satellite data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 1, pp. 27–39, DOI: 10.21046/2070-7401-2017-14-1-27-39.
  4. Osokin N. I., Sosnovsky A. V., Prostranstvennaya i vremennaya izmenchivost’ tolshchiny i plotnosti snezhnogo pokrova na territorii Rossii (Spatial and temporal variability of depth and density of the snow cover in Russia), Led i Sneg, 2014, Vol. 54, No. 4, pp. 72–80, DOI: 10.15356/2076-6734-2014-4-72-80.
  5. Postnikov A. N., Isparenie s poverkhnosti snezhnogo pokrova za period ego zaleganiya na territorii Rossii (Evaporation from the surface of snow cover for the period of its occurrence on the territory of Russia), Uchenye zapiski Rossiiskogo gosudarstvennogo gidrometeorologicheskogo universiteta, 2016, No. 42, pp. 55–63.
  6. Sivokhip Zh. T., Padalco Yu. A., Geografo-gidrologicheskie faktory opasnykh gidrologicheskikh yavlenii v basseine reki Ural (Geographical and hydrological factors of dangerous hydrological phenomena of the Ural River basin), Izvestiya Rossiiskoi akademii nauk. Ser. geograficheskaya, 2014, No. 6, pp. 53–61, DOI: 10.15356/0373-2444-2014-6-53-61.
  7. Terekhov A. G., Pak A. A., Sputnikovyi prognoz vliyaniya popolneniya Kapshagaiskogo vodokhranilishcha (KNR) na vodnost’ transgranichnoi reki Ile v 2019 godu (Influence of the Kapshagay reservoir (China) refill on transboundary River Ile runoff and satellite-based forecasting), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 298–302, DOI: 10.21046/2070-7401-2019-16-4-298-302.
  8. Terekhov A. G., Pak I. T., Dolgikh S. A., Sputnikovye nablyudeniya anomal’nogo vesennego pavodka 2016 goda v nizov’yakh reki Ayaguz (Satellite observations of the anomalous spring flood at the lower reach of the Ayaguz River in 2016), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 4, pp. 273–276, DOI: 10.21046/2070-7401-2016-13-4-273-276.
  9. Terekhov A. G., Abayev N. N., Yunicheva N. R. (2019a), Anomal’nyi rezhim snezhnosti 2019 g. i mnogoletnie trendy v izmeneniyakh vysoty snezhnogo pokrova Kazakhstana (Anomalous snow regime in 2019 and long-term trends in snow depth in Kazakhstan), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 351–355, DOI: 10.21046/2070-7401-2019-16-5-351-355.
  10. Terekhov A. G., Vitkovskaya I. S., Abayev N. N., Dolgikh S. A. (2019b), Mnogoletnie trendy v sostoyanii rastitel’nosti khrebtov Tyan’-Shanya i Dzhungarskogo Alatau po dannym eMODIS NDVI C6 (2002–2019) (Long term trends in vegetation in Tien-Shan and Dzungarian Alatau from eMODIS NDVI C6 (2002–2019)), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 6, pp. 133–142, DOI: 10.21046/2070-7401-2019-16-6-133-142.
  11. Terekhov A. G., Abayev N. N., Vitkovskaya I. S., Pak A. A., Egemberdieva Z. (2020a), O svyazi mezhdu sostoyaniem gornoi rastitel’nosti Tyan’-Shanya i indeksami severoatlanticheskoi ostsillyatsii v vesenne-letnii period sleduyushchego goda (Links between the vegetation state over Tien-Shan mountains and North Atlantic Oscillation indices of the upcoming season), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No 2, pp. 275–281, DOI: 10.21046/2070-7401-2020-17-2-275-281.
  12. Terekhov A. G., Ivkina N. I., Yunicheva N. R., Vitkovskaya I. S., Yeltay A. G. (2020b), Izmeneniya snezhnogo pokrova sukhikh stepei i polupustyn’ Kazakhstana na primere basseina reki Emby (Snow cover changes of the Kazakhstan dry steppes and semi-deserts: the case of River Emba basin studies), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 2, pp. 101–113, DOI: 10.21046/2070-7401-2020-17-2-101-113.
  13. Terekhov A. G., Abayev N. N., Lagutin E. I. (2020v), Diagnostika vodoobespechennosti sel’skokhozyaistvennykh kul’tur SUAR KNR v techenie 2003–2019 gg. po dannym eMODIS NDVI C6 (Diagnostic of water availability of agricultural crops in Xinjiang (China) in 2003–2019 based on eMODIS NDVI C6 data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 1, pp. 128–138, DOI: 10.21046/2070-7401-2020-17-1-128-138.
  14. Terekhov A. G., Ivkina N. I., Abayev N. N., Yeltay A. G., Egemberdieva Z. (2020g), Validatsiya sutochnogo produkta Snow Depth FEWS NET dlya basseina reki Ural po dannym meteorologicheskikh nablyudenii (Validation of daily Snow Depth FEWS NET product over River Ural basin on snow depth meteorological observations), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No 3, pp. 31–40, DOI: 10.21046/2070-7401-2020-17-3-31-40.
  15. Titkova T. B., Izmenenie klimaticheskikh uslovii formirovaniya zimnego stoka v basseine Verkhnego Dona po sputnikovym i nazemnym dannym (Change in climatic conditions of winter runoff formation in the Upper Don basin revealed by satellite and ground data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 1, pp. 147–157, DOI: 10.21046/2070-7401-2019-16-1-147-157.
  16. Cherenkova E. A., Tendentsii zimnego uvlazhneniya territorii basseinov Severnoi Dviny i Pechory v XX – nachale XXI vv. po nazemnym i sputnikovym dannym (Trends of winter humidification of the Northern Dvina and Pechora basins in the 20th – early 21st centuries based on terrestrial and satellite data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 285–292, DOI: 10.21046/2070-7401-2019-16-5-285-292.
  17. Shmakin A. B., Chernavskaya M. M., Popova V. V., “Velikaya” zasukha 2010 g. na Vostochno-Evropeiskoi ravnine: istoricheskie analogi, tsirkulyatsionnye mekhanizmy (2010 GREAT DROUGHT at the East European Plain: Historical Analogies and Circulation Mechanisms), Izvestiya Rossiiskoi Akademii Nauk, Ser. geograficheskaya, 2013, No. 6, pp. 59–75.
  18. Hall D. K., Riggs G. A., Accuracy assessment of the MODIS snow products, Hydrological Processes, 2007, Vol. 21, Issue 12, pp. 1534–1547, DOI: 10.1002/hyp.6715.
  19. Gafurov A., Lüdtke S., Unger-Shayesteh K., Vorogushyn S., Schone T., Schmidt S., Kalashnikova O., Merz B., MODSNOW-Tool: an operational tool for daily snow cover monitoring using MODIS data, Environmental Earth Science, 2016, Vol. 75, Art. 1078, 15 p., DOI: 10.1007/s12665-016-5869-x.
  20. Li J., Fan K., Xu Z., Links between the late wintertime North Atlantic Oscillation and springtime vegetation growth over, Eurasia, Climate Dynamics, 2016, Vol. 46, pp. 987–1000, DOI: 10.1007/s00382-015-2627-9.
  21. Liu X., Yanai M., Influence of Eurasian spring snow cover on Asian summer rainfall, Intern. J. Climate, 2002, Vol. 22, Issue 9, pp. 1075–1089, DOI: 10.1002/joc.784.
  22. Luojus K., Pulliainen J., Takala M., Lemmetyinen J., Derksen C., Wang L., Snow Water Equivalent (SWE) product guide, Version 1.0/0.1, ESA study contract report, ESRIN contract 21703/08/I-EC, Global snow monitoring for climate research, 15 Dec. 2010, 15 p.
  23. Terekhov A. G., Vitkovskaya I. S., Abayev N. N., The effect of changing stratification in the atmosphere in central zone of Eurasia according to vegetation data of Tien Shan mountains during 2002–2019, E3S Web Conf., 2020, Vol. 149, Art. 03004, 7 p., DOI: 10.1051/e3sconf/202014903004.
  24. Vasil’ev D. Y., Sivohip J. T., Chibilev A. A., Climate dynamics and interdecadal discharge fluctuations in the Ural River basin, Doklady Earth Science, 2016, Vol. 469, pp. 710–715, DOI: 10.1134/S1028334X16070096.