ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 5, pp. 53-60

Estimation of the volumes of associated gas flaring in oil production area using Landsat-8 satellite images

G.A. Kochergin 1 , M.A. Kupriyanov 1 , Yu.M. Polishchuk 1, 2 
1 Ugra Research Institute of Information Technologies, Khanty-Mansiysk, Russia
2 Institute of Petroleum Chemistry SB RAS, Tomsk, Russia
Accepted: 05.10.2020
DOI: 10.21046/2070-7401-2020-17-5-53-60
The methodological issues of estimating the volume of associated petroleum gas flaring in oil fields using medium resolution satellite images are considered. The importance of such estimation is related not only with the possibility of organizing operational monitoring of flared gas volumes in oil-producing areas but also with the need to assess the contribution to the global greenhouse effect of carbon dioxide emissions into atmosphere during associated gas flaring. The previously developed method based on the use of the normalized heat point index proposed by the authors was used for determining the number of flare units in the territory using Landsat-8 satellite images. Using the official data on the total associated gas flaring volumes in the Khanty-Mansiysk Autonomous Okrug and on the number of flare units in this area, determined from satellite images, an equation has been proposed that allows calculating the expected volumes of gas flaring depending on the number of flare units operating in the territory. An analysis of the developed model error for estimating the total quarterly volumes of gas flaring based on the data on the number of flare units in the oil production area is carried out. It is shown that this error does not exceed 10 % on average. The model can be used in space monitoring of gas flaring volumes using Landsat-8 satellite images.
Keywords: flare installations, space images. satellite monitoring, associated petroleum gas, gas burning in oil fields, normalized index of heat points, greenhouse effect
Full text


  1. Verevkin A. P., Seleznev S. B., Utilizatsiya poputnogo neftyanogo gaza na osnove elektrogeneratsii: problemy i resheniya (Associated petroleum gas utilization based on power generation: problems and solutions), Neftegazovoe delo, 2015, No. 13(1), pp. 56–62.
  2. Gribanov K. G., Zakharov V. I., Alsynbaev K. S., Sulyaev Ya.S., Metod opredeleniya raskhoda poputnogo gaza na fakelakh po dannym sputnikovogo zondirovaniya sensorami tipa MODIS v IK-kanalakh (A method for determining the rate of associated gas on flares using satellite sensing data by MODIS-type sensors in infrared channels), Optika atmosfery i okeana, 2007, Vol. 20, No. 1, pp. 68–72.
  3. Kochergin G. A., Kupriyanov M. A., Polishchuk Yu. M., Ispol’zovanie kosmicheskikh snimkov Landsat-8 dlya operativnoi otsenki summarnogo obІema fakel’nogo szhiganiya poputnogo gaza na neftedobyvayushchei territorii (The use of Landsat-8 satellite images for the rapid assessment of the total flare of associated gas in oil producing territories), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 5, pp. 47–55, DOI: 10/21046/2070-7401-2017-14-5-47-55.
  4. Kochergin G. A., Kupriyanov M. A., Polishchuk Yu.M., Prognozirovanie summarnykh obІemov fakel’nogo szhiganiya poputnogo gaza na neftedobyvayushchei territorii (Prediction of total flare volumes of associated gas in oil producing territories), Ekspozitsiya Neft’ Gaz, 2019, No. 2, pp. 99–102, DOI: 10.24411/2076-6785-2019-10021.
  5. Kupriyanov M. A., Avtomatizirovannaya sistema vydeleniya termicheskikh tochek na osnove kosmicheskikh snimkov Landsat-8 (Automated system for the selection of thermal points based on satellite images Landsat-8), Certificate of state registration of software No. 2015612965 (RU), Reg. 27.02.2015.
  6. Chowdhury S., Shipman T., Chao D., Elvidge C. D., Zhizhin M, Hsu F., Daytime gas flare detection using Landsat-8 multispectral data, Intern. Geoscience and Remote Sensing Symp. (IGARSS), 2014, pp. 258–261, DOI: 10.1109/IGARSS.2014.6946406.
  7. Elvidge C. D., Zhizhin M., Hsu F. C., Baugh K., Khomarudin M. R., Vetrita Y., Sofan P., Suwarsono, Hilman D., Long-wave infrared identification of smoldering peat fires in Indonesia with nighttime Landsat data, Environment Research Letters, 2015, Vol. 10(6), pp. 65002–65013, DOI: 10.1088/1748-9326/10/6/065002.
  8. Elvidge C. D., Zhizhin M., Baugh K., Hsu F. C., Ghosh T., Methods for Global Survey of Natural Gas Flaring from Visible Infrared Imaging Radiometer Suite Data, Energies, 2016, Vol. 9, Art. No. 14, 16 p., DOI: 10.3390/en9010014.
  9. Kato S., Kouyama T., Nakamura R., Matsunaga T., Fukuhara T., Simultaneous retrieval of temperature and area according to sub-pixel hotspots from nighttime Landsat-8 OLI data, Remote Sensing of Environment, 2018, Vol. 204, pp. 276–286, DOI: 10.1016/j.rse.2017.10.025.
  10. Kumar S. S., Roy D. P., Global Operational Land Imager (GOLI) Landsat-8 reflectance based active fire detection algorithm, Intern. J. Digital Earth, 2018, Vol. 11, pp. 154–178, DOI: 10.1080/17538947.2017.1391341.
  11. López García M. J., Caselles V., Mapping burns and natural reforestation using thematic Mapper data, Geocarto Intern., 1991, Vol. 6(1), pp. 31–37, DOI: 10.1080/10106049109354290.
  12. Schroeder W., Oliva P., Giglio L., Quayle B., Lorenz E., Morelli F., Active fire detection using Landsat-8/OLI data, Remote Sensing of Environment, 2016, Vol. 185, pp. 210–220, DOI: 10.1016/j.rse.2015.08.032.