ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 4, pp. 51-57

Remote detection of fire sources using an ultraviolet sensor

V.V. Egorov 1 , A.P. Kalinin 2 , A.I. Rodionov 3 , I.D. Rodionov 3 , I.P. Rodionova 3 
1 Space Research Institute RAS, Moscow, Russia
2 Ishlinsky Institute for Problems in Mechanics RAS, Moscow, Russia
3 “Reagent” Research and Scientific Center, Moscow, Russia
Accepted: 16.06.2020
DOI: 10.21046/2070-7401-2020-17-4-51-57
The possibilities of using an on-board ultraviolet (UV-C) sensor in the wavelength range of 250–280 nm for operational detection, determination of the coordinates of fires and guidance of a carrier of fire-extinguishing liquid (for example, water) are investigated. The principles of the sensor operation are described, the implementation of which allows to quickly determine the azimuth and angle of sight of the fire in the on-board coordinate system. It is shown that these data, together with the standard data of the onboard Doppler velocity and drift meter (DISS) and altimeter, make it possible to calculate the current range to the fire site, point the aircraft carrier at it and inform the crew about the rational moment to discharge the extinguishing liquid. The capability of the detection system in flight conditions of both flat and uneven terrain is noted. Thus, the complete autonomy of the entire on-board detection system is ensured. The problems of determining the limiting range of fire detection using the on-board sensor in the presence of smoke on the sensing path and the influence of the screening effect of vegetation for the case of forest fires are considered. Calculations of real detection ranges are given that vary from 2.4 to 4.7 km.
Keywords: aircraft, UV-C sensor, fire, detection, coordinates, range detection, threshold sensitivity
Full text

References:

  1. Belov A. A., Kalinin A. P., Krysyuk I. V., Porokhov M. A., Rodionov A. I., Rodionov I. D., Rusanov V. V., Monofotonnyi sensor ul’trafioletovogo diapazona “Skorpion” (Monophoton sensor of the ultraviolet range “Scorpion”), Datchiki i sistemy, 2010, No. 1, pp. 47–50.
  2. Belov A. A., Egorov V. V., Kalinin A. P., Korovin N. A., Rodionov I. D., Stepanov S. N., Primenenie monofotonnogo sensora “Korona” dlya distantsionnogo monitoringa sostoyaniya vysokovol’tnogo oborudovaniya (The use of the Korona monophoton sensor for remote monitoring of the state of high-voltage equipment), Glavnyi energetik, 2012, No. 6, pp. 12–17.
  3. Belov A. A., Vinogradov A. N., Egorov V. V., Zavalishin O. I., Kalinin A. P., Korovin N. A., Rodionov A. I., Rodionov I. D., Vozmozhnosti ispol’zovaniya koordinatno-chuvstvitel’nykh monofotonnykh UF-S datchikov dlya navigatsii vozdushnykh sudov v zone aerodroma (Possibilities of using coordinate-sensitive monophotonic UV-C sensors for aircraft navigation in the aerodrome zone), Datchiki i sistemy, 2014, No. 1, pp. 37–42.
  4. Bryukhanov A. V., Korshunov N. A., Aviatsionnoe tushenie prirodnykh pozharov: istoriya, sovremennoe sostoyanie, problemy i perspektivy (Aviation fire extinguishing: history, current status, problems and prospects), Sibirskii lesnoi zhurnal, 2017, No. 5, pp. 37–54.
  5. Moskvilin E. A., Primenenie aviatsii dlya tusheniya lesnykh pozharov (The use of aviation to extinguish forest fires), Pozharnaya bezopasnost, 2009, No. 1, pp. 89–92.
  6. Formozov B. N., Aerokosmicheskie fotopriemnye ustroistva v vidimom i infrakrasnom diapazonakh (Aerospace photodetectors in the visible and infrared ranges), Saint Petersburg, 2002, 120 p.
  7. Holst G. C., Lomheim T. S., CMOS/CCD sensors and camera systems, Washington, D. C.: SPIE Press Belingham, 2007, 355 p.