ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 2, pp. 265-274

Ammonia amount in the lower troposphere of Baikal region from satellite and ground based measurements

A.M. Trifonova-Yakovleva 1, 2 , S.A. Gromov 2, 1 
1 Institute of Geography RAS, Moscow, Russia
2 Institute of Global Climate and Ecology of Roshydromet and RAS, Moscow, Russia
Accepted: 21.02.2020
DOI: 10.21046/2070-7401-2020-17-2-265-274
Ammonia (NH3) in the atmosphere is one of the main causes of acid deposition and formation of PM2.5 particulate matter. Its monitoring is performed in many air quality monitoring networks including Acid Deposition Monitoring Network in East Asia (EANET). To obtain information about spatial distribution of ammonia, data retrieved from IASI instrument aboard MetOp-A satellite was used in this study. It was shown that remote sensing data and near surface ammonia measurements at EANET sites in Baikal region are in a good agreement for all the seasons except winter. Mean spring, summer and fall concentrations at 1×1° grid in Baikal region were calculated for the years from 2015 to 2017. Mean spring amount of ammonia near the surface is not high for the whole region. However, in summer and fall there are areas where concentrations far exceed background levels. These areas are mainly located closely to Lake Baikal and in Evenk District of Krasnoyarsky Krai. The most intensive forest fires registered by MODIS instrument measurements during the considered period occurred in same areas. It allows suggesting that the main sources of ammonia in atmosphere in the considered region are forest fires.
Keywords: ammonia, remote sensing, regional pollution, EANET, atmosphere
Full text

References:

  1. Beer R., Shephard M. W., Kulawik S. S., Clough S. A., Eldering A., Bowman K. W., Sander S. P., Fisher B. M., Payne V. H., Luo M., Osterman G. B., Worden J. R., First satellite observations of lower tropospheric ammonia and methanol, Geophysical Research Letters, 2008, Vol. 35, p. L09801, DIU: 10.1029/2008GL033642.
  2. Clarisse L., Clerbaux C., Dentener F., Hurtmans D., Coheur P.-F., Global ammonia distribution derived from infrared satellite observations, Nature Geoscience, 2009, Vol. 2(7), pp. 479–483, DOI: 10.1038/ngeo551.
  3. Health Effects of Particulate Matter, Policy implications for countries in Eastern Europe, Caucasus and central Asia, World Health Organization, 2013, 20 p. available at: www.euro.who.int/__data/assets/pdf_file/0006/189051/Health-effects-of-particulate-matter-final-Eng.pdf.
  4. Hegg D., Radke L., Hobbs P., Riggan P., Ammonia emissions from biomass burning, Geophysical Research Letters, 1988, Vol. 15, DOI:10.1029/GL015i004p00335.
  5. Justice C. O., Giglio L., Korontzi S., Roy D., Owens J., Alleaume S., Morisette J., Roy D., Petitcolin F., Descloitres J., Kaufman Y., Global fire products from MODIS, Remote Sensing of Environment, 2002, Vol. 83, pp. 245–263.
  6. Malm W. C., Schichtel B. A., Pitchford M. L., Ashbaugh L. L., Eldred R. A., Spatial and monthly trends in speciated fine particle concentration in the United States, J. Geophysical Research, 2004, Vol. 109, p. D03306, DOI: 10.1029/2003JD003739.
  7. Sheppard L. J., Leith I. D., Mizunuma T., Cape J. N., Crossley A., Leeson S., Sutton M. A., Dijk N. V., Fowler D., Dry deposition of ammonia gas drives species change faster than wet deposition of ammonium ions: evidence from a long-term field manipulation, Global Change Biology, 2011, Vol. 17, pp. 3589–3607, DOI: 10.1111/j.1365-2486.2011.02478.
  8. Third Periodic Report on the State of Acid Deposition in East Asia. Part III: Executive Summary, Acid Deposition Monitoring Network in East Asia, 2016, 55 p., available at: https://www.eanet.asia/wp-content/uploads/2019/03/3_ex.pdf.
  9. Van Damme M., Wichink Kruit R. J., Schaap M., Clarisse L., Clerbaux C., Coheur P.-F., Dammers E., Dolman A. J., Erisman J. W., Evaluating four years of atmospheric ammonia (NH3) over Europe using IASI satellite observations and LOTOS-EUROS model results, J. Geophysical Research: Atmospheres, 2014, Vol. 119, p. JD021911, DOI: 10.1002/2014JD021911.
  10. Van Damme M., Clarisse L., Dammers E., Liu X., Nowak J. B., Clerbaux C., Flechard C. R., Galy-Lacaux C., Xu W., Neuman J. A., Tang Y. S., Sutton M. A., Erisman J. W., Coheur P. F., Towards validation of ammonia (NH3) measurements from the IASI satellite, Atmospheric Measurement Techniques, 2015, Vol. 8, pp. 1575–1591, available at: https://doi.org/10.5194/amt-8-1575-2015.
  11. Van Damme M., Whitburn S., Clarisse L., Clerbaux C., Hurtmans D., Coheur P.-F., Version 2 of the IASI NH3 neural network retrieval algorithm: near-real-time and reanalysed datasets, Atmospheric Measurement Techniques, 2017, Vol. 10, pp. 4905–4914, available at: https://doi.org/10.5194/amt-10-4905-2017.
  12. Warner J. X., Wei Z., Strow L. L., Dickerson R. R., Nowak R., Global Ammonia Sources Seen by AIRS 13-years Measurements, Atmospheric Chemistry and Physics, 2016, Vol. 16, pp. 5467–5479, DOI: 10.5194/acp-16-5467-2016.
  13. Warner J. X., Dickerson R. R., Wei Z., Strow L. L., Wang Y., Liang Q., Increased atmospheric ammonia over the world’s major agricultural areas detected from space, Geophysical Research Letters, 2017, Vol. 44(6), pp. 2875–2884, DOI: 10.1002/2016GL072305.
  14. Whitburn S., Van Damme M., Clarisse L., Bauduin S., Heald C. L., Hadji-Lazaro J., Hurtmans D., Zondlo M. A., Clerbaux C, Coheur P.-F., A flexible and robust neural network IASI-NH3 retrieval algorithm, J. Geophysical Research: Atmospheres, 2016, Vol. 121, pp. 6581–6599, DOI: 10.1002/2016JD024828.
  15. Xu W., Wu Q., Liu X., Tang A., Dore A. J., Heal M. R., Characteristics of ammonia, acid gases, and PM for three typical land-use types in the North China Plain, Environmental Science and Pollution Research Intern., 2016, Vol. 23, pp. 1158–1172, available at: http://doi.org/10.1007/s11356-015-5648-3.