ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, Vol. 17, No. 2, pp. 275-281

Links between the vegetation state over Tien-Shan mountains and North Atlantic Oscillation indices of the upcoming season

A.G. Terekhov 1, 2 , N.N. Abayev 2, 3 , I.S. Vitkovskaya 1 , A.A. Pak 1 , Z.M. Yegemberdyeva 1, 4 
1 Institute of Information and Computing Technology MES RK, Almaty, Kazakhstan
2 RSE Kazhydromet, Almaty, Kazakhstan
3 al-Farabi Kazakh National University, Almaty, Kazakhstan
4 Almaty University of Power Engineering and Telecommunications, Almaty, Kazakhstan
Accepted: 28.02.2020
DOI: 10.21046/2070-7401-2020-17-2-275-281
The North Atlantic Oscillation (NAO) is one of the most pronounced global atmospheric centers of action that determines the weather regimes in the Northern Hemisphere. There are several natural parameters including Atlantic Ocean surface temperature and Eurasian snow cover which can be useful as predictors for the NAO indices of upcoming season. In this paper, we present a new prediction parameter which is summer NDVI vegetation indices of Tien Shan natural vegetation. The analysis of the period 2002–2018 showed that the July’s NDVI values for the natural mountain vegetation of the Tien Shan has a high correlation coefficient of 0,598 with March – July NAO values of the next season. Natural mountain vegetation was understood as the totality of phytocoenosis of the high-altitude zone, approximately 1300–3800 m above sea level, which includes: alpine/subalpine meadows, mountain forests and steppes. The seasonal state of vegetation was characterized by decadal products of FEWS NET eMODIS NDVI C6, resolution 250 m. The accumulated maximum of NDVI values for July 11–31 (20 and 21 decades) were used. The March – July monthly values of the NAO indices were taken from the archive of the National Weather Service (Climate Prediction Center). Since the positive NAO mode is associated with raised rainfall on the mainland, we see the persistence of seasonal weather patterns in Tien-Shan mountains. Features of the weather regime of the year (wet/dry) in Eurasia have an increased probability of reoccurrence in the next season. The detected effect may have prospects for the development of predicting schemes of the NAO indices values.
Keywords: indices of North Atlantic Oscillation, mountain vegetation, NDVI FEWS NET, Tien-Shan, linear correlation, persistence, forecast of NAO indices
Full text

References:

  1. Pokrovsky O. M., Izmenenie temperatury poverkhnosti okeana v Severnoi Atlantike i kolebaniya klimata Evropy (Changes in ocean surface temperature in the North Atlantic and European climate variations), Issledovanie Zemli iz kosmosa, 2005, No. 4, pp. 24–34.
  2. Popova V. V., Shmakin A. B., Vliyanie Severo-Atlanticheskogo kolebaniya na mnogoletnii gidrotermicheskii rezhim Severnoi Evrazii. Statisticheskii analiz dannykh nablyudenii (The influence of the North Atlantic Oscillation on the long-term hydrothermal regime of Northern Eurasia. Statistical analysis of observational data), Meteorologiya i Gidrologiya, 2003, No. 5, pp. 62–74.
  3. Terekhov A. G., Pak A. A., Sputnikovyi prognoz vliyaniya popolneniya Kapshagaiskogo vodokhranilishcha (KNR) na vodnost’ transgranichnoi r. Ile v 2019 g. (Influence of the Kapshagay Reservoir (China) refill on transboundary River Ile runoff and satellite-based forecasting), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 298–302, DOI: 10.21046/2070-7401-2019-16-4-298-302.
  4. Terekhov A. G., Makarenko N. G., Pak I. T., Kombinirovannyi indeks temperaturnykh uslovii i ego primenimost’ k opisaniyu sostoyaniya sel’skokhozyaistvennoi vegetatsii Kazakhstana (Combined index of temperature conditions and its applicability to the description of the state of agricultural vegetation of Kazakhstan), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 1, pp. 31–40.
  5. Terekhov A. G., Vitkovskaya I. S., Abayev N. N., Dolgikh S. A., Mnogoletnie trendy v sostoyanii rastitel’nosti khrebtov Tyan’-Shanya i Dzhungarskogo Alatau po dannym eMODIS NDVI C6 (2002–2019) (Long term trends in vegetation in Tien-Shan and Dzungarian Alatau from eMODIS NDVI C6 data (2002–2019)), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 6, pp. 133–142, DOI: 10.21046/2070-7401-2019-16-6-133-142.
  6. Cherenkova E. A., Vliyanie izmenenii krupnomasshtabnykh atmosfernykh tsirkulyatsii i temperatury poverkhnosti okeana na trendy letnikh osadkov na Evropeiskom Severe Rossii po nazemnym i sputnikovym dannym (Influence of changes in large-scale atmospheric circulation and ocean surface temperature on the trends of summer precipitation in the north of European Russia based on terrestrial and satellite data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 5, pp. 229–238, DOI: 10.21046/2070-7401-2018-15-5-229-238.
  7. Barnston A. G., Livezey R. E., Classification, seasonality and persistence of low frequency atmospheric circulation patterns, Monthly Weather Review, 1987, Vol. 115, pp. 1083–1126.
  8. Deng C., Zhang B., Cheng L., Hu L., Chen F., Vegetation dynamics and their effects on surface water-energy balance over the Three-North Region of China, Agricultural and Forest Meteorology, 2019, Vol. 275, pp. 79–90, DOI: 10.1016/j.agrformet.2019.05.012.
  9. Dole R. M., Gordon N. D., Persistent anomalies of extratropical Northern Hemisphere wintertime circulation: Geographical distribution and regional persistence characteristics, Monthly Weather Review, 1983, Vol. 111, pp. 1567–1586.
  10. Gong D., Shi P., Northern hemispheric NDVI variations associated with large-scale climate indices in spring, Intern. J. Remote Sensing, 2003, Vol. 24, No. 12, pp. 2559–2566, DOI: 0.1080/0143116031000075107.
  11. Ho C.-H., Park S.-J., Jeong S.-J., Kim J., Jhun J.-G., Observation Evidence of Double Cropping Impacts on the Climate in the Northern China Plains, J. Climate, 2012, Vol. 25, No. 13, pp. 4721–4728, DOI: 10.1175/JCLI-D-11-00224.1.
  12. Li H., Jiang Z., Liu X., Yang Q., The Relationship between the North Atlantic Oscillation and Runoff Variation of Aksu River in Xinjiang, China, Acta Geographica Sinica, 2008, No. 5, available at: http://en.cnki.com.cn/Article_en/CJFDTotal-DLXB200805007.htm.
  13. Li J., Fan K., Xu Z., Links between the late wintertime North Atlantic Oscillation and springtime vegetation growth over Eurasia, Climate Dynamics, 2016, Vol. 46, Issue 3–4, pp. 987–1000, DOI: 10.1007/s00382-015-2627-9.
  14. Pociask-Karteczka J., River hydrology and North Atlantic Oscillation: A General Review, J. Human Environment, 2006, Vol. 35, No. 6, pp. 312–314, DOI: 10.1579/05-S-114.1
  15. Polonskii A. B., Basharin D. V., Voskresenskaya E. N., North Atlantic Oscillation: Description, Mechanisms, and Influence on the Eurasian Climate, Physical Oceanography, 2004, Vol. 14, Issue 2, pp. 96–113, DOI: 10.1023/B:POCE.0000037873.85289.6e.
  16. Sun J. Q., Wang H. J., Changes of the connection between the summer North Atlantic Oscillation and the East Asian summer rainfall, J. Geophysical Research, 2012, Vol. 117, Issue D08-110, DOI: 10.1029/2012JD017482.
  17. Sun J. Q., Wang H. J., Yuan W., Decadal variations of the relationship between the summer North Atlantic Oscillation and middle East Asian air temperature, J. Geophysical Research, 2008, Vol. 113, Issue D15-107, DOI: 10.1029/2007JD009626.
  18. Tian B. Q., Fan K., A skillful prediction model for winter NAO based on Atlantic sea surface temperature and Eurasian snow cover, J. Weather Forecasting, 2015, Vol. 30, pp. 197–205, DOI: 10.1175/WAF-D-14-00100.1.
  19. van Loon H., Rogers J. C., The seesaw in winter temperatures between Greenland and northern Europe. Part I: General description, Monthly Weather Review, 1978, Vol. 106, pp. 296–310.
  20. Vicente-Serrano S. M., López-Moreno J. I., Nonstationary influence of the North Atlantic Oscillation on European precipitation, J. Geophysical Research, 2008, Vol. 113, D20120, DOI: 10.1029/2008JD010382.
  21. Wallace J. M., Gutzler D. S., Teleconnections in the geopotential height field during the Northern Hemisphere winter, Monthly Weather Review, 1981, Vol. 109, pp. 784–812.
  22. Wanner H., Brönnimann S., Casty C., Gyalistras D., Luterbacher J., Schmutz C., Stephenson D. B., Xoplaki E., North Atlantic Oscillation-concepts and studies, Surveys in Geophysics, 2001, Vol. 22, Issue 4, pp. 321–381, DOI: 10.1023/A:1014217317898.
  23. Wrzesiński D., Paluszkiewicz R., Spatial differences in the impact of the North Atlantic Oscillation on the flow of rivers in Europe, Hydrology Research, 2011, Vol. 42, No. 1, pp. 30–39, DOI: 10.2166/nh.2010.077.
  24. Xu T., Shi Z., Wang H., An Z., Nonstationary impact of the winter North Atlantic Oscillation and the response of mid-latitude Eurasian climate, Theoretical and Applied Climatology, 2016, Vol. 124, No. 1, DOI: 10.1007/s00704-015-1396-z.