ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 5, pp. 351-355

Anomalous snow regime in 2019 and long-term trends in snow depth in Kazakhstan

A.G. Terekhov 1, 2 , N.N. Abayev 2, 3 , N.R. Unicheva 1 
1 Institute of Information and Computing Technology MES, Almaty, Kazakhstan
2 RSE Kazhydromet, Almaty, Kazakhstan
3 al-Farabi Kazakh National University, Almaty, Kazakhstan
Accepted: 04.09.2019
DOI: 10.21046/2070-7401-2019-16-5-351-355
On the basis on Snow Depth (FEWS NET), the product of USGS/EROS, the daily dynamics of snow depth in Kazakhstan from January 1 to April 30, 2001–2019, was constructed and analyzed. The last four years (2015–2018) turned out to be the warmest for the Earth over the entire period of instrumental observations. Comparison of the snow regime of the territory of Kazakhstan averaged over the last five years (2015–2019) with the previous years (2001–2014) showed that the high temperature on the Earth is accompanied by a decrease of the snow cover depth in Kazakhstan. The beginning of the snowmelt period has shifted to earlier periods. The shift was about 6 days (from 23 to 17 February). The snow cover regime of 2019 was characterized by low snowfall and exceptional variability. The snow depth in Kazakhstan for close calendar dates varied, from a long-term minimum (April 1–14) to a long-term maximum (April 19–20). Thus, the current direction of global climatic changes leads to a decrease in the snow depth in Kazakhstan and a shift of the beginning of snowmelt period to earlier periods. Satellite diagnostics of snow cover dynamics in Kazakhstan has a particular significance. Frequent and strong winds in the steppe and semi-desert zones of Kazakhstan interfere with ground-based measurements of solid precipitation. In this regard, climatic trends for Kazakhstan related to the amount of solid precipitation, built on the basis of ground-based information, should preferably be supplemented with independent data sources including satellite ones.
Keywords: remote sensing, snow cover, snow depth, territory of Kazakhstan, long-term trends, climate change
Full text

References:

  1. Kauazov A. M., Dara A. S., Batyrbaeva M. Zh., Vitkovskaya I. S., Muratova N. R., Salnikov V. G., Turulina G. K., Polyakova S. E., Spivak L. F., Turebayeva S. I., Issledovanie dinamiki dat skhoda snezhnogo pokrova v Severnom Kazakhstane (Investigation of timing dynamics of snow cover loss in Northern Kazakhstan), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 1, pp. 161–168, DOI: 10.21046/2070-7401-2016-13-1-161-168.
  2. Terekhov A. G., Sputnikovyi monitoring formirovaniya snezhnogo pokrova Kazakhstana (Satellite monitoring of forming snow cover of Kazakhstan), Gidrometeorologiya i Ekologiya, 2018, Issue 90, No. 3, pp. 29–36.
  3. Terekhov A. G., Pak I. T., Dolgikh S. A., Dannye LANDSAT 5,7,8 i TsMR v zadache monitoringa gidrologicheskogo rezhima Kapshagaiskogo vodokhranilishcha na reke Tekes (kitaiskaya chast’ basseina reki Ile) (Hydrology monitoring of Kapchagay reservoir on river Tekes (China’s part of river Ile basin) based on LANDSAT 5,7,8 data and DEM batymetry), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 6, pp. 174–182.
  4. Terekhov A. G., Pak I. T., Dolgikh S. A., Sputnikovye nablyudeniya anomal’nogo vesennego pavodka 2016 goda v nizov’yakh reki Ayaguz (Satellite observations of the anomalous spring flood at the lower reach of the Ayaguz river in 2016), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 4, pp. 273–276, DOI: 10.21046/2070-7401-2016-13-4-273-276.
  5. Guide to Meteorological Instruments and Methods of Observation (2014), WMO, 2017, No. 8, available at: https://library.wmo.int/index.php?lvl=notice_display&id=12407#.XbdHq4_VJWI/ (accessed 23.04.2019).
  6. Hall D. K., Rigs G. A., Accuracy assessment of the MODIS snow products, Hydrological Processes, 2007, Vol. 21, pp. 1534–1547.
  7. Kumar S. V., Peters-Lidard C. D., Mocko D., Tian Y., Multiscale evaluation of the improvements in surface snow simulation through terrain adjustments to radiation, J. Hydrometeorol., 2013, Vol. 14, No. 1, pp. 220–232.
  8. Muratova N., Terekhov A., Estimation of spring crops sowing calendar dates using MODIS in Northern Kazakhstan, Proc. IGARSS’04, Anchorage, 2004, Vol. 6, pp. 4019–4020.
  9. Spivak L., Vitkovskaya I., Batyrbayeva V., Terekhov A., The experience of land cover change detection by satellite data, Frontiers of Earth Science, 2012, Vol. 6, Issue 2, pp. 140–146, DOI: 10.1007/s11707-012-0317-z.
  10. Sultangazin U., Muratova N., Doraiswamy P., Terekhov A., Estimation of weed infestation in spring crops using MODIS data, Proc. IGARSS’03, Toulouse, 2003, Vol. 1, pp. 392–394.
  11. Takala M., Luojus K., Pulliainen J., Derksen C., Lemmetyinen J., Karna J.-P., Koskinen J., Bojkov B., Estimating Northern hemisphere snow water equivalent for climatic research through assimilation of spaceborne radiometer data and ground-based measurements, J. Remote Sensing of Environment, 2011, Vol. 115, Issue 12, pp. 3517–3529, DOI: 10.1016/j.rse.2011.08.014.
  12. WMO Statement on the state of the global climate in 2018, WMO, 2019, No. 1233, 44 p., available at: https://library.wmo.int/doc_num.php?explnum_id=5789/.