ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 150-160

Possibilities of experimental field soil cover recognition using ground and satellite data

A.P. Shevyrnogov 1 , I.Yu. Botvich 1 , D.V. Emelyanov 1 , A.A. Larko 1 , G.S. Vysotskaya 1 , V.K. Ivchenko 2 , T.N. Demyanenko 2 
1 Institute of Biophysics SB RAS, Krasnoyarsk, Russia
2 Krasnoyarsk State Agrarian University, Krasnoyarsk, Russia
Accepted: 29.03.2019
DOI: 10.21046/2070-7401-2019-16-4-150-160
The paper presents the results of a study showing the possibility of recognition of soil cover with different types of soil and soil cultivation techniques by remote sensing methods. Satellite (Sentinel-2) and terrestrial (SpectralEvolutionPSR-1100F) optical data of various spatial and spectral resolution were used. The data with a high heterogeneity of experimental plots were obtained in the Minderlinskoe experimental farm, Sukhobuzimsky district of the Krasnoyarsk Kray. It is established that measurements of spectral brightness coefficient (SBC) with high spectral resolution can be used to evaluate soil cultivation techniques and, in some cases, to identify soil types. The presence of stubble on soil surface has a significant impact on the process of soil types identification. The biggest difference in soil species diversity can be established in the absence of stubble. Using remote sensing for determination of the “hydrometamorphized clay-illuvial agricultural chernozem” soil type with “plowing” processing is demonstrated. It is shown that data from channels 2, 3, 4, and 8 of Sentinel-2 and their spatial variability can be directly used to assess the types of soil treatment and agrophysical characteristics at the initial stage of the vegetation period (open surface).
Keywords: satellite and terrestrial research methods, agricultural land, Sentinel-2, soil
Full text

References:

  1. Borin A. A., Loshchina A. E., Zavisimost’ urozhainosti zernovykh kul’tur ot priemov agrotekhniki (The relation of the yield of grain cultures on the method of agrotechnology), Vladimirskii zemledelets, 2015, No. 2(72), 2015, pp. 2–6.
  2. Ivchenko V. K., Mikhailova Z. I., Vliyanie razlichnykh obrabotok pochvy i sredstv intensifikatsii na produktivnost’ zernovykh kul’tur (The effect of different soil treatment and funds of intensification on the productivity of grain crops), Vestnik Krasnoyarskogo gosudarstvennogo agrarnogo universiteta, 2017, No. 4, pp. 3–10.
  3. Loshchinina A. E., Urozhainost’ kul’tur sevooborota pri razlichnykh sistemakh obrabotki pochvy (The yields of crop rotation under various tillage systems), Agrarnyi vestnik Verkhnevolzh’ya, 2016, No. 1, pp. 22–27.
  4. Okunev G. A., Rakhimov R. S., Zonal’nye problemy resursosberegayushchikh tekhnologii v zemledelii (na primere zernovogo kompleksa OAO “Ptitsefabrika Chelyabinskaya”) (Zonal problem saving technologies in agriculture (for example, the grain complex of JSC “Chelyabinsk Poultry Farm”)), Fundamental’nye osnovy nauchno-tekhnicheskoi i tekhnologicheskoi modernizatsii APK (Fundamentals of Scientific, Technical and Technological Modernization of the Agricultural Sector), Proc. All-Russia Scientific and Practical Conf., Ufa: Bashkir State Agrarian University, 2013, pp. 253–263.
  5. Okunev G. A., Kuznetsov N. A., Kanatpaev S. S., Resursosberegayushchie tekhnologii ― rezerv povysheniya effektivnosti zemledeliya (Resource saving technologies is a reserve of agriculture efficiency increase), APK Rossii, 2017, Vol. 24, No. 1, pp. 136–141.
  6. Kholzakov V. M., Resursosberegayushchie tekhnologii v zemledelii (Resource saving technologies in agriculture), Vestnik Izhevskoi gosudarstvennoi sel’skokhozyaistvennoi akademii, 2007, No. 3(13), pp. 2–3.
  7. Shishov L. L., Tonkonogov V. D., Klassifikatsiya i diagnostika pochv Rossii (Classification and diagnostics of soils in Russia), Smolensk: Oikumena, 2004, 342 p.
  8. Baret F., Guyo G., Potentials and limits of vegetation indices for LAI and APAR assessment, Remote Sensing of Environment, 1991, Vol. 35, pp. 161–173.
  9. Jordan C. F., Derivation of leaf-area index from quality of light on the forest floor, Ecology, 1969, Vol. 50, pp. 663–666.
  10. Wolf A., Using WorldView-2 Vis-NIR multispectral imagery to support land mapping and feature extraction using normalized difference index ratios, Proc. SPIE, Vol. 8390, 2012.