ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 140-148

Prospects for geostatistics application for analyzing plant state on the basis of remote sensing data

Yu.G. Zakharyan 1 , A.A. Komarov 1 
1 Agrophysical Research Institute, Saint Petersburg, Russia
Accepted: 23.05.2019
DOI: 10.21046/2070-7401-2019-16-3-140-148
The paper presents scientific and methodological approaches for the application of geostatistics methods and remote sensing data to assess the state of agricultural fields characterized by soil cover heterogeneity. The calculation of the NDVI vegetation index was based on the satellite data. The obtained NDVI values were coordinated with ground measurements. The studies were conducted at the test site of the regional monitoring network in Leningrad Region. It was shown that geostatistical analysis of remote sensing data and the use of spatial differentiation of agricultural technology of satellite monitoring can be used to assess multiple heterogeneous indicators. In some cases, the required assessment can be obtained based on a theoretical approach and presented in analytical form using geostatistics probabilistic mathematical apparatus taking into account the variability of soil-climatic and other factors.
Keywords: remote sensing data, NDVI, geostatistics, variogram analysis, spatial differentiation, space images
Full text


  1. Gandin L. S. Kagan R. L., Statisticheskie metody interpretatsii meteorologicheskikh dannykh (Statistical methods for the interpretation of meteorological data), Leningrad: Gidrometeoizdat, 1976, 360 p.
  2. Demyanov V. V., Savelieva E. A., Geostatistika: teoriya i praktika (Geostatistics: theory and practice), Moscow: Science, 2010, 327 p.
  3. Zakharyan Y. G., Otsenka effektivnosti adaptatsii agrotekhnologicheskikh resheniy k prostranstvenno-vremennoi neodnorodnosti sel’skokhozyaistvennykh zemel’: Avtoref. diss. dokt. s.-kh. nauk (Assessment of the effectiveness of the agrotechnological solutions adaptation to the spatial and temporal heterogeneity of agricultural land: Ext. abstract Doct. agricult. sci. thesis), Saint Petersburg: FGBNU AFI, 2018, 51 p.
  4. Komarov A. A., Zakharyan Yu. G., Kirsanov A. D., Analiz prostranstvennykh raspredeleniy urozhaynosti dlya obosnovaniya differentsiatsii agrotekhnologii (Analysis of the spatial distribution of yield to substantiate the differentiation of agrotechnology), Izvestiya Sankt-Peterburgskogo agrarnogo universiteta, 2017, No. 47, pp. 48–57.
  5. Loupian E. A., Burtsev M. A., Proshin A. A., Kobets D. A., Razvitie podkhodov k postroeniyu informatsionnykh system distantsionnogo monitoringa (Evolution of remote monitoring information systems development concepts), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 3, pp. 53–66, DOI: 10.21046/2070-7401-2018-15-3-53-66.
  6. Tochnoe zemledelie: teoriya i praktika (Precision agriculture: theory and practice), Saint Petersburg: FGBNU AFI, 2016, 364 p.
  7. Geostatistical applications for precision agriculture, Oliver M. A. (ed.), Springer Science and Business Media, 2010, 331 p.
  8. Isaaks N., Shrivastava R. M., Applied Geostatistics, Oxford University Press, 1989, 589 p.
  9. Journel A. G., Huijbregts Ch. J., Mining Geostatistics, London and New York (Academic Press), 1978, 600 p.
  10. Precision agriculture technology for group farming, Zhang Q. (ed.), CRC Press, 2015, 360 p.
  11. Uskov A. O., Zakharyan J. G., Expedient spatial differentiation of technologies of precise agriculture according to productivity factors, JIAC 2009, Book of abstracts, Netherlands: Wageningen Academic Publishers, 2009, p. 113.