ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 7, pp. 249-258

Estimates of the characteristics of cloud wall of the typhoon eye according to ASCAT scatterometers data

M.S. Permyakov 1, 2 , T.I. Kleshcheva 1 , E.Yu. Potalova 1 
1 V.I. Il`ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
2 Far Eastern Federal University, Vladivostok, Russia
Accepted: 12.10.2018
DOI: 10.21046/2070-7401-2018-15-7-249-258
Methods to estimate the main characteristics of the cloudy wall of the tropical cyclone (TC) eye based on the wind speed data of the scatterometer ASCAT (MetOp-A and MetOp-B satellites) are discussed and applied in this work. Based on the proposed methods, the estimates of the coordinates of the TC centers, the maximum wind and eye radii were obtained for 33 typhoons in the northwestern part of the Pacific Ocean in the period from 2011 to 2015. The maximum wind radii in the TC, obtained by two methods, ranged from 14 to 158 km and averaged 55 and 47 km, respectively. The TC eye radii, calculated from the ASCAT wind speed vorticity, varied in the range from 5 to 21 km and averaged 12 km. These estimates were compared with the TC best track data of the Joint Typhoon Warning Center (JTWC). It is shown that the distances between the typhoons centers, estimated by the ASCAT data with the help of two methods and the JTWC data, varied from 1 to 82 km and averaged 20 and 17 km, respectively. The maximum wind radii from ASCAT and JTWC are closely related with the correlation coefficients of about 0.5 and with a root-mean-square difference of 21 and 24 km, respectively. It is noted that the maximum winds and eyes radii from the JTWC archive clearly grouped around discrete values with intervals of 3–10 km, which is caused by the specification of the method of their evaluation.
Keywords: remote sensing, tropical cyclone, cloud wall, radius of maximum wind, radius of eye, ASCAT, JTWC
Full text


  1. Permyakov M. S., Potalova E. Yu., Mezomasshtabnaya struktura tropicheskikh tsiklonov (Mesoscale structure of tropical cyclones), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 1, pp. 72–80.
  2. Permyakov M. S., Potalova E. Yu., Kleshcheva T. I., Mezomasshtabnaya struktura tropicheskikh tsiklonov v pole privodnogo vetra (Mesoscale structure of tropical cyclones in the surface wind field), Meteorologiya i gidrologiya, 2013, No. 11, pp. 22–29.
  3. Pratt W., Tsifrovaya obrabotka izobrazheniya (Digital image processing), Moscow: Mir, 1982, 480 p.
  4. Tarkhova T. I., Permyakov M. S., Potalova E. Yu., Semykin V. I., O svyazi anomalii pripoverkhnostnogo vetra s gradientami temperatury poverkhnosti okeana po dannym distantsionnogo zondirovaniya (About the coupling of surface wind anomalies and sea surface temperature gradients according to remote sensing data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2010, Vol. 7, No. 3, pp. 45–52.
  5. Dvorak V. F., Tropical cyclone intensity analysis and forecasting from satellite imagery, Monthly Weather Review, 1975, Vol. 103, pp. 420–430.
  6. Kossin J. P., Knaff J. A., Berger H. I., Herndon D. C., Cram T. A., Velden C. S., Murnane R. J., Hawkins J. D., Estimating hurricane wind structure in the absence of aircraft reconnaissance, Weather Forecasting, 2007, Vol. 22, pp. 89–101.
  7. Martin J. D., Gray W. M., Tropical cyclone observation and forecasting with and without aircraft reconnaissance, Weather Forecasting, 1993, Vol. 8, pp. 519–532.
  8. Olander T. L., Velden C. S., The advanced Dvorak technique: continued development of an objective scheme to estimate tropical cyclone intensity using geostationary infrared satellite imagery, Weather Forecasting, 2007, Vol. 22, pp. 287–298.
  9. Permyakov M. S., Potalova E. Yu., Shevtsov B. M., Cherneva N. V., Holzworth R. H., Thunderstorm activity and the structure of tropical cyclones, Atmospheric and Oceanic Optics, 2015, Vol. 28, pp. 585–590.
  10. Powers J. G., Klemp J. B., Skamarock W. C., Davis C. A., Dudhia J., Gill D. O., Coen J. L., Gochis D. J., Ahmadov R., Peckham S. E., Grell G. A., Michalakes J., Trahan S., Benjamin S. G., Alexander C. R., Dimego G. J., Wang W., Schwartz C. S., Romine G. S., Liu Z., Snyder C., Chen F., Barlage M. J., Yu W., Duda M. G., The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions, BAMS, 2017, Vol. 98, No. 8, pp. 1717–1737.
  11. Shea D. J., Gray W. M., The hurricane inner core region, J. Atmospheric Sciences, 1973, Vol. 30, pp. 1544–1464.
  12. Velden C., Harper B., Wells F., Beven J. L., Zehr R., Olander T., Mayfield M., Guard C., Lander M., Edson R., Avila L., Burton A., Turk M., Kikuchi A., Christian A., Caroff P., McCrone P., The Dvorak Tropical Cyclone Intensity Estimation Technique: A Satellite-Based Method that Has Endured for over 30 Years, BAMS, 2006, Vol. 87, No. 9, pp. 1195–1210.
  13. Verhoef A., Portabella M., Stoffelen A., High-resolution ASCAT scatterometer winds near the coast, IEEE Trans. Geoscience and Remote Sensing, 2012, Vol. 50, pp. 2481–2487, DOI: 10.1109/TGRS.2011.2175001.
  14. Wimmers A. J., Velden C. S., Objectively Determining the Rotational Center of Tropical Cyclones in Passive Microwave Satellite Imagery, Applied Meteorology and Climatology, 2010, Vol. 49, pp. 2013–2034.