ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 7, pp. 67-77

Land surface temperature in the Tyva Republic in the winters of 2014-2017 by Landsat-8 data

Kh.B. Kuular 1 
1 Tuvinian Institute for Exploration of Natural Resources SB RAS, Kyzyl, Russia
Accepted: 15.10.2018
DOI: 10.21046/2070-7401-2018-15-7-67-77
Processed Landsat-8 images of the territory of the Republic of Tyva formed the basis for compiling a January temperature map for 2014–2017. The generated map demonstrates that thermal radiation intensity varies over the land surface with vegetation type and landscape. The cold period in the region is found to exhibit a specific feature ― temperature inversions arising after decrease of temperature in the surface layer. The temperature in the generated map varies from –13 to –38 °C. The temperature increases with height by 1 C every 100–120 m at the northern macroslopes and every 70–100 m on the southern macroslopes of the mountain ridges. Minimum temperatures (–35…–38 °C) are observed at the piedmont of the ridges and in the intermountain depressions (Ubsu-nur, Tyva and Todzha basins) at the heights of 650–1100 m above sea level. Maximum temperatures (–13…–23 °C) are observed at the heights of 1700–2200 m above sea level (subgoltsy-taiga altitudinal belt complex). The LST map data are compared with the ground data. This specifies and corrects the available information about correlation of the winter temperature of the landscape surface (LST) and the vegetation in the mountains.
Keywords: land surface temperature on January, Landsat-8 image, far infrared range, altitude mountain landscape
Full text


  1. Bulygina O. N., Razuvaev V. N., Trofimenko L. T., Shvets N. V., Opisanie massiva dannykh srednemesyachnoi temperatury na stantsiyakh Rossii (Description of array of average monthly temperature data at stations in Russia), Certificate of state registration of database No. 2014621485, Reg. 20.11.2014, ULR:
  2. Grishchenko M., Konstantinov P., Deshifrirovanie poverkhnostnogo ostrova tepla Moskvy po teplovym kosmicheskim snimkam s resursnykh sputnikov (Revealing Moscow surface urban heat island using thermal infrared images acquired by resource satellites), Zbirnik naukovikh prats’ Kharkiv, 2016, Issue 23, pp. 27–34.
  3. Istomina E. A., Vasilenko O. V., Analiz temperaturnogo polya landshaftov Tunkinskoi kotloviny s ispol’zovaniem kosmicheskikh snimkov Landsat i nazemnykh dannykh (Temperature field analysis of landscapes of the Tunkinskaya depression with the use of Landsat images and terrestrial data), Geografija i prirodnye resursy, 2015, No. 4, pp. 162–170.
  4. Karta-skhema lesov Tuvy, Masshtab 1: 300 000 (The map-scheme of the forest of Tuva, Scale 1: 300000), Moscow: GUGK, 1992.
  5. Kuular Kh. B., Chupikova S. A., Ekologicheskie osobennosti boreal’nykh lesov khrebta Zapadnyi Tannu-Ola i geoinformatsionnyi analiz (Ecological features of boreal forests of the Western Tannu-Ola ridge and geoinformation analysis), Geoinformatika, 2010, No. 1, pp. 68–72.
  6. Makunina N. I., Rastitel’nost’ lesostepi Zapadno-Sibirskoi ravniny i Altae-Sayanskoi gornoi oblasti (The forest-steppe vegetation of the west Siberian plain and the Altai-Sayan Mountain region), Novosibirsk: Akademicheskoe izdatel’stvo “Geo”, 2016, 183 p.
  7. Rastitel’nyi pokrov i estestvennye kormovye ugod’ya Tuvinskoi ASSR (The vegetation cover and natural forage lands in the Tuva ASSR), I. Yu. Koropachinskii (ed.), Novosibirsk: Nauka, 1985, 253 p.
  8. Tipy lesov gor Yuzhnoi Sibiri (Types of forests in the mountains of Southern Siberia), Novosibirsk: Nauka, 1980. 334 p.
  9. Buyadi S. N. A., Mohd W. M. N. W., Misni A., Impact of Land Use Changes on the Surface Temperature Distribution of Area Surrounding the National Botanic Garden, Shah Alam, ProcediaSocial and Behavioral Sciences, 2013,Vol. 101, pp. 516–525.
  10. Congedo L., Semi-Automatic Classification Plugin Documentation, 2017, 278 p.
  11. Lambin E. F., Ehrlich D., Combining vegetation indices and surface temperature for land-cover mapping at broad spatial scales, Intern. J. Remote Sensing, 1995, Vol. 16, No. 3, pp. 573–579.
  12. Land Surface Temperature (LST). Product user manual, LSA SAF, 2010, SAF/LAND/IM/PUM_LST/2.5, Issue 2.5, 49 p.
  13. Landsat-8 (L8). Data Users Handbook, Version 2.0, 2016, Sioux Falls, South Dakota: EROS, 2016, 106 p.
  14. Omran E.-S. E., Detection of Land-Use and Surface Temperature Change at Different Resolutions, J. Geographic Inform. System, 2012, Vol. 4, pp. 189–203.
  15. Raj K. B. G., Fleming K., Surface Temperature Estimation from Landsat ETM Data for a part of the Baspa Basin, NW Himalaya, India, Bulletin of Glaciological Research, 2008, Vol. 25, pp. 19–26.
  16. Rouse J. W., Haas R. H., Shell J. A., Deering D. W., Monitoring vegetation systems in the Great Plains with ERTS, 3rd Earth Resources Technology Satellite-1 Symp., Proc., Washington, DC, 1973, Vol. 1, pp. 309–317.
  17. Van de Griend A. A., Owen M., On the relationship between thermal emissivity and the normalized difference vegetation index for natural surface, Intern. J. Remote Sensing, 1993, Vol. 14, pp. 1119–1131.
  18. Vlassova L., Perez-Cabello F., Nieto H., Martín P., Riaño D., De la Riva J., Assessment of methods for land surface temperature Retrieval from Landsat-5 TM Images Applicable to Multiscale Tree-Grass Ecosystem Modeling, Remote Sensing, 2014, Vol. 6, pp. 4345–4368.