ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 5, pp. 33-43

The algorithm for detecting hot points from the data of the AHI device Himawari-8

I.S. Pustynskiy 1 , J.A. Shamilova 1 , E.I. Kholodov 1 , V.V. Suhanova 1 
1 Far Eastern Center of SRC Planeta, Khabarovsk, Russia
Accepted: 30.10.2018
DOI: 10.21046/2070-7401-2018-15-5-33-43
The paper presents the original algorithm for detecting hot points of probable wildfires developed in the Far East Center of the SRC Planeta for the AHI device of the geostationary satellite Himawari-8. In the algorithm for detection hot points of probable wildfires, in addition to traditional methods of detection, we use a method based on the main advantage of geostationary satellites ― the high frequency of the data of the same territory. The authors developed an original spatio-temporal context that makes it possible to achieve an optimal balance between the periodicity of observation and the probability of detecting small wildfires at an early stage. When comparing the results of the operation of the algorithm with the data of polar-orbital satellites for the period of 2017 it was established that, taking into account the spatial resolution of the AHI device, information about the hot points of probable wildfires detected by the algorithm could be used to take early preventive measures in the most fire hazardous areas. The detection of hot points of probable wildfires was fixed 2.83 hours earlier than according to the data of polar-orbital satellites, which are close in time; it shows that the application of the spatio-temporal context significantly expanded the possibilities of the algorithm for detecting hot points in the period of their occurrence.
Keywords: Himawari, AHI, wildfires, hotspots, fire detection
Full text

References:

  1. Belyaev A. I., Korovin G. N., Loupian E. A., Ispol’zovanie sputnikovykh dannykh v sisteme distantsionnogo monitoringa lesnykh pozharov MPR RF (Using the satellite data in the systme of forest fires remote monitoring of Russian Agency for Forest Resources), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2005, Issue 2, Vol. 1, pp. 20–29.
  2. Galeev A. A., Kotel’nikov R. V., Krasheninnikova Yu.S., Loupian E. A., Sementin V. L., Flitman E. V., Scherbenko E. V., Sopostavlenie informatsii o lesnykh pozharakh po dannym sputnikovykh, nazemnykh i aviatsionnykh nablyudenii ISDM-Rosleskhoz (Comparison of information about forest fires according to satellite, ground and aerial observations of ISDM-Rosleskhoz), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2008, Issue 5, Vol 2, pp. 458–468.
  3. Loupian E. A., Bartalev S. A., Balashov I. V., Egorov V. A., Ershov D. V., Kobets D. A., Senko K. S., Styitsenko F. V., Syichugov I. G., Sputnikovyi monitoring lesnykh pozharov v 21 veke na territorii Rossiiskoi Federatsii (tsifry i fakty po dannym detektirovaniya aktivnogo goreniya) (Satellite monitoring of forest fires in the 21st century in the territory of the Russian Federation (facts and figures based on active fires detection)), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 6, pp. 158–175.
  4. Justice C. O., Giglio L., Korontzi S., Owens J., Morisette J. T., Roy D., Descloitres J., Alleaume S., Petitcolin F., Kaufman Y., The MODIS fire products, Remote Sensing of Environment, 2002, Vol. 83, No. 1–2, pp. 244–262.
  5. Heidinger A. K., CLAVR-x Cloud Mask Algorithm Theoretical Basis Document (ATBD), Technical Report, NOAA/NESDIS, Madison, WI, USA, 2004.
  6. Sobel I., An isotropic image gradient operator, In: Machine Vision for Three-Dimensional Scenes, H. Freeman (ed.), Academic Press, 1990, pp. 376–379.