ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 3, pp. 127-135

Potential possibilities of using MODIS NDVI time series for operative monitoring of apricot orchard

A.S. Morenets 1 , I.Yu. Savin 2, 3 , I.A. Dragavtseva 1 , I.S. Kozubenko 4 
1 North-Caucasian Zonal Research Institute of Horticulture and Viticulture, Krasnodar, Russia
2 V.V. Dokuchaev Soil Science Institute, Moscow, Russia
3 Agrarian-Technological Institute RUDN, Moscow, Russia
4 Ministry of Agriculture of Russia, Moscow, Russia
Accepted: 21.05.2018
DOI: 10.21046/2070-7401-2018-15-3-127-135
When cultivating perennial fruit plantations, it is important to monitor their condition promptly, on the basis of which it is possible to make management decisions on the timely correction of agricultural technology, as well as forecasting and planning of fruit production. In the article the possibilities of using the weekly MODIS NDVI composites along with meteorological data for the operative monitoring of apricot gardens are discussed. As the main source of information, the data of the Internet service “VEGA”, as well as field survey data at three test sites in the Krasnodar Region for the period 2001−2016 were used. The conducted researches showed that the MODIS NDVI data can be used for recognition and operative monitoring of the state of the apricot orchards. Spring frosts, as one of the main factors of apricot productivity in the Krasnodar Region, do not directly affect NDVI, but damage to flower buds, flowers or petals leads to the fact that NDVI mid-season vegetation in the presence of spring frosts is lower than in seasons without frosts. Decrease in NDVI values in the middle of the growing season correlates with the losses of apricot productivity caused by spring frosts. When analyzing the long-term dynamics of the NDVI apricot garden, it is necessary to take into account the age of the trees. The availability of weekly NDVI composites in VEGA service as well as meteorological data is a good basis for the operative monitoring of apricot orchards in the territory of the Krasnodar Region.
Keywords: satellite monitoring, MODIS, NDVI, Krasnodar Region, apricot
Full text


  1. Dragavtseva I. A., Savin I.Yu., Zagirov N. G., Kaziev M. R. A., Akhmatova Z. P., Morenets A. S., Battalova S. B., Resursnyi potentsial zemel’ Severnogo Kavkaza dlya plodovodstva (Resources potential of lands of Northern Caucasus for horticulture), Krasnodar, Makhachkala: DagNIISKh, 2016, 138 p.
  2. Egorov E. A., Fisenko A. N., Doroshenko T. N., Khvostova I. V., Teren’ko G. N., Popova V. P., Smol’yakova V. M., Storchevaya E. M., Cherkezova S. R., Dragavtseva I. A., Artyukh S. N., Mozhar N. V., Alekhina E. M., Zaremuk R. Sh., Prichko T. G., Lopatina L. M., Savin I. Yu., Svyatkina O. A., Sistemoobrazuyushchie ekologicheskie faktory i kriterii zon ustoichivogo razvitiya plodovodstva na Severnom Kavkaze (System-forming ecological factors and criteria of zones for sustainable development of horticulture on Northern Caucasus), Krasnodar: SKZNIISiV, 2001, 284 p.
  3. Loupian E. A., Bartalev S. A., Savin I.Yu., Tekhnologii sputnikovogo monitoringa v sel’skom khozyaistve Rossii (Satellite monitoring technologies in agriculture of Russia), Aerokosmicheskii kur’er, 2009, No. 6, pp. 47–49.
  4. Loupian E. A., Savin I. Yu., Bartalev S. A., Tolpin V. A., Balashov I. V., Plotnikov D. E., Sputnikovyi servis monitoringa sostoyaniya rastitel’nosti “VEGA” (Satellite service for monitoring of status of vegetation “VEGA”), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 1. pp. 190–198.
  5. Rybalko E. A., Baranova N. V., Loupyan E. A., Tolpin V. A., Kashnitski A. V., Uvarov I. A., Krasheninnikova Yu. S., Ivanchenko V. I., Organizatsiya raboty s dannymi nazemnykh i distantsionnykh nablyudenii dlya resheniya zadach distantsionnogo monitoringa vinogradnikov (Management of ground data and remote observations data processing aimed at vineyards remote monitoring), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 1, pp. 79–92.
  6. Savin I. Yu., Sovremennyi sputnikovyi monitoring pochv i posevov: dostizheniya i problemy (Modern satellite monitoring of soils and crops: achievements and problems), Primenenie sredstv distantsionnogo zondirovaniya Zemli v sel’skom khozyaistve (Application of remote sensing measures in agriculture), Proc. All-Russia Science Conference, St. Petersburg, 2015, pp. 29–32.
  7. Tolpin V. A., Rybalko E. A., Baranova N. V., Kashnitskii A. V., Loupian E. A., Uvarov I. A., Formirovanie informatsionnoi bazy sputnikovykh i nazemnykh dannykh dlya otrabotki metodik distantsionnogo monitoringa vinogradarstva v Respublike Krym (Building a repository of satellite and ground data for the development of viticulture remote monitoring methods in the Republic of Crimea), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 1., pp. 101–110.
  8. Alvino A., Marino S., Remote Sensing for Irrigation of Horticultural Crops, Horticulturae, 2017, Vol. 3, Article No. 40.
  9. Atzberger C., Advances in remote sensing of agriculture: context description, existing operational monitoring systems and major information needs, Remote Sensing, 2013, Vol. 5, pp. 949–981.
  10. Casa R., Rossi M., Sappa G., Trotta A., Assessing Crop Water Demand by Remote Sensing and GIS for the Pontina Plain, Central Italy, Water Resour. Manag., 2009, Vol. 23, pp. 1685–1712.
  11. Corgne S., Hubert-Moy L., Betbeder J., Monitoring of Agricultural Landscapes Using Remote Sensing Data, In: Land Surface Remote Sensing in Agriculture and Forest, 2016, pp. 221–247.
  12. Mushtaq G., Asima N., Estimation of apple orchard using remote sensing and agro-meteorology land-based observation in Pulwama district of Kashmir valley, Int. J. Remote sensing and Geosciences, 2014, Vol. 3 (6), pp. 2319–3484.
  13. Pujar D. U., Pujar U. U., Shruthi C. R., Wadagave A., Chulaki M., Remote sensing in fruit crops, J. Pharmacognosy and Phytochemistry, 2017, Vol. 6 (5), pp. 2479–2484.
  14. Rembold F., Atzberger C., Savin I., Rojas O., Using Low Resolution Satellite Imagery for Yield Prediction and Yield Anomaly Detection, Remote Sensing, 2013, Vol. 5 (4), pp. 1704–1733.
  15. Usha K., Singh B., Potential applications of remote sensing in horticulture: A review, Scientia Horticulturae, 2013, Vol. 153, pp. 71–83, URL: