ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 5, pp. 161-171

Method of croplands dynamics mapping in river basins of the European part of Russia for the period of 1985–2015

M.A. Ivanov 1 , A.V. Prishchepov 2, 1 , V.N. Golosov 1 , R.R. Zalyaliev 1 , K.V. Efimov 3 , A.A. Kondrat’eva 4 , A.D. Kinyashova 1 , Yu.K. Ionova 1 
1 Kazan Federal University, Kazan, Russia
2 University of Copenhagen, Copenhagen, Denmark
3 State University of Land Use Planning, Moscow, Russia
4 Kazan State Agricultural University, Kazan, Russia
Accepted: 15.09.2017
DOI: 10.21046/2070-7401-2017-14-5-161-171
The work is devoted to the technique of mapping of cultivated and abandoned croplands in areas of the European territory of Russia of different climate, landscape and geomorphological conditions. A technological scheme of croplands visual interpretation based on Landsat 5 and 8 multi-seasonal images for two time slices (mid-1980s and the modern period of 2013–2015) is described. Classification keys of various types of croplands are introduced: spring crops, winter crops, fallow, abandoned croplands. A technique of croplands digitizing based on the principles used in the CORINE Land Cover 2000 (CLC2000) project is presented. Vector layers of cultivated croplands for the two considered periods are obtained. Validation of the results based on high-resolution satellite imagery is performed.
Keywords: Landsat, cropland, land use dynamics, European part of Russia
Full text

References:

  1. Landshaftnaya karta SSSR (Landscape map of USSR), Moscow: Ministerstvo geologii SSSR, Gidrospetsgeologiya, 1980.
  2. Lyuri D.I., Goryachkin S.V., Karavaeva N.A., Denisenko E.A., Nefedova T.T., Dinamika sel’skokhozyaistvennykh zemel’ Rossii v XX veke i postagrogennoe vosstanovlenie rastitel’nosti i pochv (Dynamics of Russian agricultural land in the XX century and postagrogenic restoration of vegetation and soil), Moscow: GEOS, 2010, 416 p.
  3. Bartalev S.A., Plotnikov D.E., Loupian E.A., Mapping of arable land in Russia using multi-year time series of MODIS data and the LAGMA classification technique, Remote Sensing Letters, 2016, Vol. 7, pp. 269–278. DOI: 10.1080/2150704X.2015.1130874.
  4. Baumann M., Kuemmerle T., Elbakidze M., Ozdogan M., Radeloff V.C., Keuler N.S., Prishchepov A.V., Kruhlov I., Hostert P., Patterns and drivers of post-socialist farmland abandonment in Western Ukraine, Land Use Policy, 2011, Vol. 28 (3), pp. 552–562.
  5. Bossard M., Feranec J., Otahel J., CORINE Land Cover Technical Guide – Addendum 2000. Technical report No 40, Copenhagen (EEA), 2000, URL: http://terrestrial.eionet.eu.int.
  6. Buttner G., Feranec J., Jaffrain G., Mari L., Maucha G., Soukup T., The CORINE land cover 2000 project, EARSeL eProceedings, 2004, Vol. 3 (3). Paris (EARSeL), pp. 331–346.
  7. Caetano M., Mata F., Freire S., Accuracy assessment of the Portuguese CORINE land cover map, Global Developments in Environmental Earth Observation from Space, 2006, pp. 459–467.
  8. Cohen W.B., Goward S.N., Landsat’s Role in Ecological Applications of Remote Sensing, BioScience, 2004, Vol. 54, p. 535. DOI: 10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2.
  9. Congalton R., Biging G., A pilot study ground reference data collection efforts for use in forest inventory, Photogrammetric Engineering and Remote Sensing, 1992, Vol. 58, pp. 1669–1671.
  10. Congalton R., Green K., Assessing the accuracy of remotely sensed data: principles and practices. Danvers, USA: CRC Press, 1999, 200 p.
  11. de Beurs K.M., Ioffe G., Use of Landsat and MODIS data to remotely estimate Russia’s sown area, Journal of Land Use Science, 2014, Vol. 9, pp. 377–401. DOI: 10.1080/1747423X.2013.798038.
  12. EEA-ETC/TE: CORINE Land Cover update, I&CLC2000 project, Technical Guidelines, 2002, URL: http://terrestrial.eionet.eu.int.
  13. European landscape dynamics: CORINE Land Cover data, CRC Press, Taylor and Francis Group, 2016, 337 p.
  14. Feranec J., Hazeu G., Christensen S., Jaffrain G., CORINE land cover change detection in Europe (case studies of The Netherlands and Slovakia), Land Use Policy, 2007, Vol. 24 (1), pp. 234–247.
  15. Hammond T., Verbyla D., Optimistic bias in classification accuracy assessment, International Journal of Remote Sensing, 1996, Vol. 17, pp. 1261–1266.
  16. Hansen M.C., Loveland T.R., A review of large area monitoring of land cover change using Landsat data, Remote Sensing of Environment, 2012, Vol. 12, pp. 66–74.
  17. Jensen J.R., Introductory digital image processing: A Remote Sensing Perspective, 3rd ed, Pearson, Upper Saddle River, NJ, 2005.
  18. Kraemer R., Prishchepov A.V., Müller D., Kuemmerle T., Radeloff V.C., Dara A., Terekhov A., Frühauf M., Long-term agricultural land-cover change and potential for cropland expansion in the former Virgin Lands area of Kazakhstan, Environmental Research Letters, 2015, Vol. 10, 054012.
  19. Prishchepov A.V., Müller D., Dubinin M., Baumann M., Radeloff V.C., Determinants of agricultural land abandonment in post-Soviet European Russia, Land use policy, 2013, Vol. 30 (1), pp. 873–884.
  20. Quinn J.W., Band Combination, 2001, URL: http://web.pdx.edu/%7Eemch/ip1/bandcombinations.html.
  21. Stehman S., Basic probability sampling designs for thematic map accuracy assessment, International Journal of Remote Sensing, 1999, Vol. 20, pp. 2423–2441.