ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 4, pp. 219-230

The relationships between the lineaments in satellite images and earthquake epicenters within the Baikal Rift Zone

B.S. Busygin 1 , S.L. Nikulin 1 
1 National Mining University, Dniepro, Ukraine
Accepted: 27.08.2016
DOI: 10.21046/2070-7401-2016-13-15-219-230
The study results of spatial relationship between earthquakes epicenters and lineaments network in satellite images of the Baikal Rift Zone are presented. On the basis of a joint analysis of Google satellite imagery and RAS geophysical service server data on earthquakes occurred in 2007−2015, the authors reveal some facts confirming the existence of a variety of relationships between seismic activity and lineament network of the area, which opens up opportunities to apply lineament analysis techniques for earthquake study and forecast. A specific feature of the research is independent application of several essentially varying methodical approaches − multidimensional classification with samples, estimates of geological structure complexity measure and identification of areas with a geological structure, atypical for the studied territory in general. In particular, it is established that epicenters of earthquakes gravitate to areas which are characterized by a geological structure of the increased complexity with prevalence of lineament with bearing azimuths of 22.5±12.5º, 67.5±12.5º, 112.5±12.5º, 157.5±12.5º, which are atypical for the Earth's surface. The results obtained using different approaches have significant similarity, and at the same time are in good agree-ment with actual data, which indicates their reliability and objectivity.
Keywords: satellite images, earthquakes, rift zone, lineament network, lineament analysis, multidimensional classification
Full text

References:

  1. Bondur V.G., Zverev A.T., Gaponova E.V., Zima A.L. Issledovanie iz kosmosa deformatsionnykh voln – predvestnikov zemletryaseniy, proyavlyayuschihsya v dinamike lineamentnykh system (Space Methods in Predictive Cyclic Dynamics of Lineament System Before Preparation of the Earthquakes), Issledovanie Zemli iz kosmosa, 2012, No. 1, pp. 3–20.
  2. Busygin B.S., Miroshnichenko L.V., Raspoznavanie obrazov pri geologo-geofizicheskom prognozirovanii (Pattern recognition for geological and geophysical prognosis). Dnepropetrovsk: DGU publ., 1991, 168 p.
  3. Busygin B.S., Nikulin S.L., Spetsializirovannaya geoinformatsionnaya sistema RAPID: struktura, tehnologiya, zadachi (Specialized geoinformation RAPID system: features, structure, tasks), Geoinformatika, Kyiv, 2016, No. 1 (57), pp. 22–37.
  4. Vashchillov Yu.Ya., Kalinina L.Yu., Glubinnyie razlomyi i lineamentyi i razmeschenie epitsentrov zemletryaseniy na sushe Severo-Vostoka Rossii (Deep-Seated Faults and Lineaments: The Location of Earthquake Epicenters in the Russian Northeast on Land), Vulkanologiya i seysmologiya, 2008, No. 3, pp.19–31.
  5. Galaziy G.I., Lut B.F., Baykalskie zemletryaseniya (odna iz vozmozhnykh prichin) (Baikal earthquakes (one of the possible reasons)), Geografiya i prirodnyie resursyi, 2000, No. 2, pp. 37–42.
  6. Gornyy V.I. Tronin A.A., Obzor dostizheniy poslednego desyatiletiya v oblasti primeneniya sputnikovykh metodov distantsionnogo zondirovaniya pri geologicheskih i geofizicheskih issledovaniyah (Review of the last decade major achievements of remote sensing methods application on the geological & geophysical problems solution), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 5, pp. 116–132.
  7. Dobretsov N.L., Ruzhich V.V., Psakhie S.G., Chernykh E.H., Shilko E.V., Levina E.A., Ponomareva E.I., O sovershenstvovanii sposobov prognoza zemletryaseniy sredstvami fizicheskogo modelirovaniya v ledovom pokrove Baykala (Advance in earthquake prediction by physical simulation on the Baikal ice cover), Fizicheskaya mezomehanika, 2011, Vol. 14, No. 4, pp. 69–79.
  8. Kusner Yu.S., Luhneva O.F., Luhnev A.V., Tsarev I.G., Raspredelenie razlomov Baykalskoy riftovoy zonyi kak fraktalnykh ob'ektov (Distribution of breaks of the Baikal rift zone as fractal objects), Geografiya i prirodnyie resursyi, 2008, No. 1, pp. 67–72.
  9. Nikulin S.L., Ispolzovanie granits yarkosti geoizobrazheniy pri avtomatizirovannom prognozirovanii geologicheskih ob'ektov (Using geoimages brightness borders for automated forecasting of geological objects), XI International conference: “Geoinformatics: Theoretical and Applied Aspects“, Kyiv, 2012, 4 p.
  10. Skaryatin V.D., Makarova M.G., Lokalizatsiya krupnykh zemletryaseniy i lineamentyi (Localization of large earthquakes and lineaments), Razlomoobrazovanie i seysmichnost v litosfere: tektonofizicheskie kontseptsii i sledstviya (Breaks creation and seismicity in a lithosphere: the tectonics concepts and consequences), Irkutsk: RAS’s Institute of Earth Crust, 2009, Vol. 1, pp. 103–105.
  11. Arellano-Baeza A.A., Zverev A.T., Malinnikov V.A., Study of changes in the lineament structure, caused by earthquakes in South America by applying the lineament analysis to the Aster (Terra) satellite data, Advances in Space Research, 2006, Vol. 37, Issue 4, pp. 690–697.
  12. Cronin V.S., Millard M., Seidman L., Bayliss B., The seismo-lineament analysis method (SLAM) – A re-connaissance tool to help find seismogenic faults, Environmental & Engineering Geoscience, 2008, Vol. 14. No. 3, pp. 199–219.
  13. Gonzalez R.C., Woods R.E., Digital Image Processing. 3rd edition. Pearson Prentice Hall, 2008, 976 p.
  14. Kalinnikov I.I., Mikheeva A.V., The GIS-EEDB computing system, lineaments, and the earthquake prediction problem, Bull. Nov. Comp. Center, Math. Model. in Geoph., 2015, Vol. 18, pp. 17–34.
  15. Sharifia A., Rajabia M.A., Moghaddamb N.F., Studying the Earthquake Effects on Lineament Density Changes by Remote Sensing Technology, International Proceedings GEOBIA 2008: “Pixels, Objects, Intelligence. GEOgraphic Object Based Image Analysis for the 21st Century”, Calgary, Canada, 6–7 August, 2008, URL: http://www.isprs.org/proceedings/XXXVIII/4-C1/Sessions/Session8/6657__Sharifi_Proc_pap.pdf.