ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 4, pp. 276-285

Development of automatic navigation method for MSU-MR imagery of polar-orbital satellite “Meteor-M” No.1

S.N. Katamanov 
Institute of Automation and Control Processes FEB RAS, Vladivostok, 690041, Russia
The development results of an automatic navigation method for MSU-MR images obtained during a full receiving session of the Russian satellite Meteor-M No.1 are presented. The method is based on the orbital motion model SGP4 (with propagation NORAD TLE sets) and a mathematical model of Meteor-M-1/MSU-MR physical image deformation. Pixel navigation accuracy is achieved by computing satellite attitude angles (roll, pitch and yaw) based on ground control points that are automatically defined in an image. The misalignment angles between the optical channel sensor axes of the Meteor-M-1/MSU-MR radiometer are calculated. The approbation results of the new navigation method are presented and discussed for long series of Meteor-M-1/MSU-MR data received at the Center for Regional Satellite Monitoring of Environment of the Far-Eastern Branch of the Russian Academy of Sciences (CRSME FEB RAS). Examination of the navigation results of the proposed method can be performed visually by RGB-images gallery on the CRSME FEB RAS website (http://www.satellite.dvo.ru/gallery/sat_image).
Keywords: Meteor-M, MSU-MR, satellite images, navigation, channel-to-channel registration, ground control points, satellite attitude (roll, pitch and yaw)
Full text

References:

  1. Avanesov G.A., Krasikov V.A., Nikitin A.V., Sazonov V.V., Otsenka tochnosti opredeleniya parametrov orientatsii osei sistemy koordinat astroizmeritel'nogo pribora BOKZ-M po eksperimental'nym dannym (Accuracy estimation of determining attitude of coordinate systems of the star sensor BOKZ-M by experimental data), Preprint of IPM RAN, 2010, No. 74, 37 p.
  2. Gektin Yu.M., Akimov N.P., Frolov A.G., Smelyanskii M.B. Mnogokanal'nyi skaniruyushchii radiometr s shirokoi polosoi obzora (Multichannel scanning radiometer with a wide swath), Russian Patent Bull. 2008, No. 13, 10 p.
  3. Katamanov S.N., Razrabotka avtomaticheskogo metoda geograficheskoi privyazki izobrazhenii MVISR polyarno-orbital'nogo sputnika FengYun-1D (Development of automatic method navigation for MVISR imagery of polar-orbital satellite FengYun-1D), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 3, pp. 85–93.
  4. Makridenko L.A., Volkova S.N., Trifonova Yu.V., Kosmicheskii kompleks gidrometeorologicheskogo i okeanograficheskogo obespecheniya “Meteor-3M” s kosmicheskim apparatom “Meteor-M” No.1 (Space complex hydro-meteorological and oceanographic software “Meteor-3M” spacecraft “Meteor-M” No.1), Moscow: NPP VNIIEM, 2008, 143 p.
  5. Kuznetsov A.E., Nefedov V.I., Model' tsifrovogo sovmeshcheniya gidrometeorologicheskoi sputnikovoi informatsii (Model of combining digital satellite hydrometeorological information), Vestnik RGRTU, No. 3 (45), 2013, pp. 8–13.
  6. Epshtein Yu.S., Gerbek E.E., Metod tochnoi geograficheskoi privyazki izobrazhenii AVHRR NOAA (Method accurate navigation of NOAA/AVHRR imagery), Electronic journal “Issledovano v Rossii”, 2001, No. 41, pp. 456–464.
  7. Katamanov S.N., Automatic navigation of one pixel accuracy for meteorological satellite imagery, Proc. 1st Russia and Pacific Conf. on Computer Technology and Applications, Vladivostok, Russia, 2010, pp. 269–274.
  8. Kelso T.S., Orbital Data on the WWW, Satellite Times, 1996, Vol. 2, No. 5, pp. 80–81.
  9. Rosborough G.W., Baldwin D., Emery W.J., Precise AVHRR Image Navigation, IEEE Trans. Geosci. Rem. Sens., 1994, Vol. 32, pp. 644–657.
  10. Vallado D.A., Crawford P.S., Hujsak R., Kelso T.S., Revisiting Spacetrack Report #3, AIAA/AAS Astrodynamics Specialist Conf., Keystone, CO, 21–24 August 2006, 94 p.
  11. Wessel P., Smith W.H.F. A Global, Self-consistent, Hierarchical, High-resolution Shoreline database, J. of Geophys. Res., 1996, Vol. 101, No. B4, pp. 8741–8743.