ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 2, pp. 9-29

The principles of creating airborne stellar-inertial system

G.A. Avanesov 1, R.V. Bessonov 1, A.N. Kurkina 1, M.B. Ludomirskiy 2, I.S. Kayutin 2, N.E. Yamshikov 2
1 Space Research Institute of RAS, Moscow, Russia
2 Electrooptika Corp, Moscow, Russia
There is considered the main concept of creating airborne and ground-based stellar-inertial navigation systems, based on strapdown inertial navigation devices – stellar tracker, inertial navigation system and satellite navigation receiver. The requirements to optical and electronic components of inertial navigation system stellar tracker are formulated. The results of inertial navigation system model experimental processing both on ground and on the object are given. There are considered various astrocorrection versions of strapdown inertial navigation system implemented in stellar inertial navigation system.
Keywords: бесплатформенная астроинерциальная навигационная система, бесплатформенная инерциальная навигационная система, астровизирующее устройство, всемирное координированное время, strapdown stellar inertial navigation system, strapdown inertial navigation system, stellar tracker, Coordinated Universal Time
Full text

References:

  1. Avanesov G.A., Forsh A.A., Bessonov R.V., Ziman Ya.L., Kudelin M.I., Zalyalova R.G., Giroskopiya i navigatsiya, 2007.
  2. Branets V.N., Shmyglevskii I.P., Vvedenie v teoriyu besplatformennykh inertsial'nykh
  3. navigatsionnykh sistem (Introduction to the theory of strapdown inertial navigation systems), Moscow: Nauka, 1992, 280 p.
  4. Vorob'ev L.M., Astronomicheskaya navigatsiya letatel'nykh apparatov (Astronomical navigation of aircrafts), Moscow: Mashinostroenie, 1968, 280 p.
  5. Zharov V.E., Sfericheskaya astronomiya (Spherical astronomy), Fryazino: Vek-2, 2006, 480 p.
  6. Ishlinskii A.Yu., Giroskopy, orientatsiya i inertsial'naya navigatsiya (Gyroscopes, orientation and inertial navigation), Moscow: Nauka, 1976, 672 p.
  7. Meeus J., Astronomicheskie formuly dlya kal'kulyatorov (Astronomical formulae for calculators), Moscow: Mir, 1988, 168 p.
  8. Audoin C., Guinot B., Izmerenie vremeni. Osnovy GPS (The measurement of time: Time, frequency and the atomic clock), Moscow: Tekhnosfera, 2002, 400 p.
  9. Stepanov O.A., In: Integrirovannye inertsial'no-sputnikovye sistemy navigatsii (Integrated inertial satellite systems navigation), Saint-Petersburg: GNTs RF-TsNII Elektropribor, 2001, pp. 25-43 (235 p.).
  10. RD 50-25645.325-89 (USSR standard), Moscow: Izdatel'stvo standartov, 1990.
  11. Avanesov G.A., Bessonov R.V., Ziman Ya.L., Kudelin M.I., Forsh A.A., Integrated Instruments for Spacecraft Autonomous Navigation, 7-th International Symposium Reducing the Costs of Spacecraft Ground Systems and Operation, Moscow, 11–15 June, 2007.
  12. Gregerson С., Bangert J., Pappalardi F., Celestial Augmentation of Inertial Navigation Systems: A Robust Navigation Alternative. U.S. Naval Observatory/Space and Naval Warfare Systems Command, USNO/SPAWAR white paper, (n. d.).
  13. Grewal M., Weil L., Andrews A., Global Positioning Systems, Inertial Navigation and Integration, Wiley, 2001.
  14. Salychev О., Inertial Systems in Navigation and Geophysics, Moscow: Bauman MSTU Press, 1998, 352 p.
  15. Titterton D., Weston J., Strapdown inertial navigation technology, The Institution of Electrical Engineers, 2004, 558 p.