Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 3, pp. 75-82
Assimilation problem for an "image" of velocities for vorticity equation
Moscow Institute of Physics and Technology, 141700, Dolgoprudniy, Institutskiy lane, 9
Mathematical models using the vorticity equation of physical processes in vertical flow, created in magnetic hydrodynamic way in a thin layer of rotating liquid, are proposed. Inverse problems on restoring electric field vector are stated, algorithms of numerical solution are formulated and the results of numerical experiments are presented. The results are compared to the results of calculations based on linear model of shallow water equations.
Keywords: inverse problems, variational data assimilation, images, adjoint problems
Full textReferences:
- Agoshkov V.I., Metody optimal'nogo upravleniya i sopryazhennykh uravnenii v zadachakh matematicheskoi fiziki (Optimization control methods and conjugate equations in problems of mathematical physics), Moscow: IVM RAN, 2003, 256 p.
- Arakava A., Lemb V.R., Modeli obshchei tsirkulyatsii atmosfery (Models of the General circulation of the atmosphere), Leningrad: Gidrometeoizdat, 1981, 352 p.
- Doronin Yu.P., Dinamika okeana (The ocean dynamics), Leningrad: Gidrometioizdat, 1980, 304 p.
- Kirko I.M, Kirko G.E., Magnitnaya gidrodinamika. Sovremennoe videnie problem (Magnetohydrodynamics. Modern vision), Moscow; Izhevsk: NITs “Regulyarnaya i khaoticheskaya dinamika”, 2009, 632 p.
- Ladyzhenskaya O.A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti (Mathematical problems of dynamics of a viscous incompressible fluid), Moscow: Nauka, 1970, 288 p.
- Marchuk G.I., Sarkisyan A.S., Matematicheskoe modelirovanie tsirkulyatsii okeana (Mathematical modeling of ocean circulation), Moscow: Nauka, 1988, 304 p.
- Ponomarev V.M., Khapaev A.A., Yakushkin I.G., Doklady Akademii Nauk, 2009, Vol. 425, No. 6, pp. 821–826.
- Yanovskii B.M., Zemnoi magnetizm (Terrestrial magnetism), Leningrad: Izd-vo Leningradskogo un-ta, 1964.
- Agoshkov V.I., Kostrykin S.V., Semenenko A., Inverse problem for a model of magnetic hydrodynamics, Russian Journal of Numerical Analysis and Mathematical Modelling, 2011, Vol. 26, No. 1, pp. 1–15.