ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 4, pp. 159-168

One-dimensional numerical model of H2O cloud formation in the Martian atmosphere

A.V. Burlakov 1, A.V. Rodin 2
1 Space Research Institute of RAS, 117997, 84/32 Profsoyuznaya Str., Moscow, Russia
2 Space Research Institute of RAS Moscow Institute of Physics and Technology (State University), 117997, 84/32 Profsoyuznaya Str., Moscow, Russia 141700, 9, Instityskii per., Dolgoprudny, Moscow Region, Russia
One-dimensional numerical model with a size distribution of aerosol particles in Martian atmosphere is developed. The diurnal cycle of condensational processes is obtained on the basis of temperature profiles from 3D GCM. An effective radius of ice particles varies from 1 to 2 μm at lower layers of the cloud and it varies within 0.2-0.3 μm above 50 km. These results are consistent with data from SPICAM experiment on Mars-Express. Dependence of condensational process and macroscopic parameters on microphysical properties of aerosol particles is analyzed. One dimension model with modified spatial dynamics is also presented, basing on the approximation of fractional diffusion.
Keywords: microphysical processes, fractional diffusion, numerical simulation
Full text

References:

  1. Petukhov A.A., Reviznikov D.L., Moscow: Vestnik MAI, 2009, Vol. 16, No. 6, pp. 228-234.
  2. Rodin A.V., Uilson R.Dzh., Kosmicheskie issledovaniya, 2006, Vol. 44, No. 4, pp. 1-5.
  3. Samarskii A.A., Vabishchevich P.N., Additivnye skhemy dlya zadach matematicheskoi fiziki (Additive schemes for problems of mathematical physics), Moscow: Nauka, 2001.
  4. Clancy R.T., Grossman A.W., Wolff M.J., P.B. James, D.J. Rudy, Y.N. Billawala, B.J. Sandor, S.W. Lee, D.O. Muhleman, Water vapor saturation at low altitudes around Mars aphelion: A key to Mars climate?, Icarus, 1996, No. 122, pp. 36-62.
  5. Fedorova A.A., Korablev O.I., Bertaux J.-L., Rodin A.V., Montmessin F., Belyaev D. A., Reberac A., Solar infrared occultation observations by SPICAM experiment on Mars-Express: Simultaneous measurements of the vertical distributions of H2O, CO2 and aerosol, Icarus, 2008, No. 200, pp. 96-117.
  6. Jacobson M.Z., Fundamentals of Atmospheric Modeling, Cambridge, 2005.
  7. Jakosky B.M., The role of seasonal reservoirs in the Mars water cycle. II. Coupled models of regolith, the polar caps, and atmospheric transport, Icarus, 1983, No. 55, pp. 19-39.
  8. James P.B., The Martian hydrologic cycle-Effects of CO2 mass flux on global water distribution, Icarus, 1985, No. 64, pp. 249-264.
  9. Korablev O.I., Krasnopolsky V.A., Rodin A.V., Vertical structure of Martian dust measured by solar infrared occultations from the Phobos spacecraft, Icarus, 1992, No. 102, pp. 76-87.
  10. Michelangely D.V., Toon O. B., Heberle R.M., Pollack J.B., Numerical simulation of the formation and evolution of water ice clouds in the Martian atmosphere, Icarus, 1993, No. 100, pp. 261-285.
  11. Pruppacher H.R., Klett J.D., Microphysics of Clouds and Precipitation, Kluwer, 2000.
  12. Richardson M.I., Wilson R.J., Investigation of the nature and stability of the Martian seasonal water cycle with a general circulation model, J. Geophys. Res., 2002, No. 107 (E5), p. 5031, available at: DOI:10.1029/2001JE001536.
  13. Rodin A.V., Clancy R.T., Wilson R.J., Dynamical properties of Mars water ice clouds and their interactions with atmospheric dust and radiation, Adv. Space Res., 1999, No. 23, pp. 1577-1585.