ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 2, pp. 93-99

On a method of investigation of damping of waves on a surface of turbulized liquid

S.A. Ermakov 1, I.A. Kapustin 1, T.N. Lazareva 1, O.V. Shomina 2
1 ИInstiturte of Applied Physics RAS, 603950, Nizhny Novgorod, Uljanova St. 46
2 Nizhny Novgorod State University, 603950, , Nizhny Novgorod, Gagarina Pr. 23
Damping of gravity-capillary waves (GCW) due to turbulence is a classical hydrodynamic problem which has important geophysical applications, such as radar and optical imaging of ship wakes on the sea surface. A new method of investigation of GCW damping due to turbulence and obtained first results are described in this paper. Damping of
GCW parametrically excited in a vessel installed on a vibrating table was studied. GCW and turbulence were generated in a two-frequency regime (a sum of two harmonic oscillations). The high frequency/small amplitude signal was used for parametric excitation of GCW, the low frequency/large amplitude signal - for generation of turbulence when
flowing a stable perforated plate around. The wave damping coefficient was determined when measuring the GCW excitation threshold, and the parameters of turbulence were measured with PIV and PTV methods. Dependencies of GCW damping coefficient vs. wave frequency at different intensities of turbulence are presented and the turbulent viscosity values are estimated from these dependencies.
Keywords: gravity-capillary waves, turbulence, turbulent viscosity
Full text

References:

  1. Barenblatt G.I., Podobie, avtomodel'nost', promezhutochnaya asimptotika. Teoriya i prilozheniya k geofizicheskoi gidrodinamike (Similarity, self-similarity, and intermediate asymptotics. Theory and applications to geophysical hydrodynamics), Leningrad: Gidrometeoizdat, 1978, 190 p.
  2. Boev A.G., Izv. RAN FAO, 1971, No. 7, pp. 31–36.
  3. Bulatov M.G., Kravtsov Yu.A., Lavrova O.Yu., Litovchenko K.Ts., Mityagina M.I., Raev M.D., Sabinin K.D., Trokhimovskii Yu.G., Churyumov A.N., Shugan I.V., UFN, 2003, Vol. 173, No. 1, pp. 69-87.
  4. Ermakov S.A., Vliyanie plenok na dinamiku gravitatsionno-kapillyarnykh voln (The influence of the films on the dynamics of gravity-capillary waves), Nizhnii Novgorod: IPF RAN, 2010, 165 p.
  5. Monin A.S., Krasitskii V.P., Yavleniya na poverkhnosti okeana (Phenomena on the surface of the ocean), Leningrad: Gidrometeoizdat, 1985, 375 p.
  6. Shlikhting G., Teoriya pogranichnogo sloya (Theory of a boundary layer), Moscow: Nauka, 1969, 742 p.
  7. Green T., Medwin H., Paquin J., Nature Phys. Sci, 1972, Vol. 237, pp. 115–117.
  8. Lyden J.D., Hammond R.R., Lyzenga D.R., Shuchman R.A., J. Geophys. Res., 1988, Vol. 93 (C10), pp. 12293-12303.
  9. Milgram J.H., J. Geophys. Res., 1998, Vol. 103, pp. 15717–15272.
  10. Olmez H., Milgram J.H., J. Fluid Mech., 1992, Vol. 239, pp. 133–156.
  11. Phillips O.M., J. Fluid Mech., 1959, Vol. 5, pp.177-192.
  12. Scully-Power P., Navy Oceanographer Shuttle Observations, STS 41-G, Mission Report Naval Underwater Systems Center Tech. Rep. NUSC TD 7611, 1986, 71 p.
  13. Vesecky J.E., Stewart R.H., J.Geophys. Res., 1982, Vol. 87 (C5), pp. 3397-3430.