ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 1, pp. 65-72

Classification of clouds in satellite images based on the technology of neural networks

V.G. Astafurov1, А.V. Skorokhodov2
1 V. E. Zuev Institute of Atmospheric Optics SB RAS Tomsk State University of Control Systems and Radioelectronics, 1, Academician Zuev Sq., Tomsk 634021 40, Lenin Ave., Tomsk 634050
2 V. E. Zuev Institute of Atmospheric Optics SB RAS, 1, Academician Zuev Sq., Tomsk 634021
For segmentation of cloud fields in satellite images and classification of clouds by types, it is suggested to use algorithms based on neural networks. For a description of clouds, information on their characteristic texture parameters is used. Problems of choice of the neural network architecture and its influence on the quality of image processing are discussed. Results of classification of clouds in satellite images recorded by the MODIS spectral radiometer are presented. The results obtained illustrate the efficiency of the suggested approach.
Keywords: cloud types, texture parameters, classification, segmentation, neural network
Full text

References:

  1. Oblaka i oblachnaya atmosfera. Spravochnik (Clouds and cloud atmosphere. Reference), Leningrad: Gidrometeoizdat, 1989, 647 p.
  2. Tishkin R.V., Nauchno-tekhnicheskaya konferentsiya FGUP “RNII KP” (Scientific and Technical Conference of FSUE “RNII KP”), Abstracts of Papers, 2007, p. 323.
  3. Bankert R.L., Mitrescu C., Miller S.D., Wade R.H., Comparison of GOES cloud classification algorithms employing explicit and implicit physics, Journal of applied meteorology and climatology, 2009, Vol. 48, pp. 1411–1421.
  4. Prett U., Tsifrovaya obrabotka izobrazhenii (Digital image processing), Moscow: Mir, 1982, 480 p.
  5. Potapov A.A., Fraktaly v radiofizike i radiolokatsii: Topologiya vyborki (Fractals in radio physics and radar: Topology sample), Moscow: Universitetskaya kniga, 2005, 848 p.
  6. Kharalik R.M., TIIER, 1979, Vol. 67, No. 5, pp. 98–120.
  7. Andreev G.A., Zarubezhnaya radioelektronika, 1984, No. 2, pp. 3–33.
  8. Weszka J., Dyer C., Rosenfeld A., A comparative study of texture measures for terrain classification, IEEE Trans. Syst., Man and Cybern., 1976, Vol. SMC-6, No. 4, pp. 269–285.
  9. Astafurov V.G., Skorokhodov A.V., Kontrol' okruzhayushchei sredy i klimata “KOSK-2010” (Monitoring of the Environment and Climate “KOSK-2010”), Proceedings of the Symposium, Tomsk, 2010, pp. 292-294.
  10. Ersahin K., Scheuchl B., Cumming I., Incorporating texture information into polarimetric radar classification using neural networks, Proceedings of IGARSS’04.
  11. Osovskii S., Neironnye seti dlya obrabotki informatsii (Neural networks for information processing), Moscow: Finansy i statistika, 2002, 344 p.
  12. Khaikin S., Neironnye seti: Polnyi kurs (Neural networks: a comprehensive course), Moscow: Izdatel'skii dom Vil'yams, 2008, 1103 p.
  13. Kalan R. Osnovnye kontseptsii neironnykh setei (The basic concept of neural networks), Moscow: Izdatel'skii dom Vil'yams, 2001, 287 p.
  14. Mitsel' A.A., Kolodnikova N.V., Protasov K.T., Izvestiya Tomskogo politekhnicheskogo universiteta, 2005, Vol. 308, No. 1, pp. 65–70.
  15. Gonsales R., Vuds R., Tsifrovaya obrabotka izobrazhenii (Digital image processing), Moscow: Tekhnosfera, 2005, 1072 p.