ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 1, pp. 44-62

Assessment of satellite images segmentation methods for forest change detection

S.A. Bartalev , T.S. Khovratovich 
Russian Academy of Sciences Space Research Institute(IKI), 117997, 84/32 Profsoyuznaya str, Moscow, Russia
The paper is devoted to the selection of a proper image segmentation method for detection forest changes caused by logging using high spatial resolution satellite data. Four segmentation algorithms were examined. Algorithms were selected due to different strategies they use for combining pixel into connected regions. The evaluation is performed by different criteria that measure a difference between created partition of the image and reference data on clear-cuts developed by an expert. The paper proposed a method for comparing of segmentation algorithms and fitting theirs parameters.
Keywords: remote sensing, forest change detection, object-oriented approach, segmentation of satellite images
Full text

References:

  1. Bartalev S.A., Isaev A.S., Loupian E.A., Sibirskii ekologicheskii zhurnal, 2005, Vol. 12, No. 6, pp. 1039-1054.
  2. Bartalev S.A., Zlatopol'skii A.A., Galeev A.A., Efremov V.Yu., Loupian E.A., Mazurov A.A., Proshin A.A., Flitman E.V., Shcherbenko E.V., Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2009, Issue 6, Vol. 2, pp. 335-342.
  3. Bartalev S.A., Egorov V.A., Krylov A.M., Stytsenko F.V., Khovratovich T.S., Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2010, Vol. 7, No. 3, pp. 215-225.
  4. Zlatopol'skii A.A., Issledovanie Zemli iz kosmosa, 1985, No. 1, pp. 94-102.
  5. Levashkina A.O., Porshnev S.V., Izvestiya Tomskogo politekhnicheskogo universiteta, 2008, Vol. 313, No. 5, pp. 28-33.
  6. Baatz M., Schäpe A., Multiresolution segmentation – an optimization approach for high quality multiscale image segmentation, Angewandte Geographische Information sverarbeitung XII, 2000, pp. 12-23.
  7. Blaschke T., Object based image analysis for remote sensing, ISPRS Journal of Photogrammetry and Remote Sensing, 2010, Vol. 65, No.1, pp. 2-16.
  8. Blaschke, T., Lang, S., Lorup, E., Strobl, J., Zeil, P., Object-oriented image processing in an integrated GIS/remote sensing environment and perspectives for environmental applications, Environmental Information for Planning, Politics and the Public, 2000, Vol. 2, pp. 555-570.
  9. Blaschke T., Strobl J., What’s wrong with pixels? Some recent developments interfacing remote sensing and GIS, GIS–Zeitschrift für Geoinformationssysteme, 2001, Vol. 14, No. 6, pp. 12–17.
  10. Canny J., Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 1986, Vol. 8, No. 6, pp. 679–698.
  11. Chabrier S., Emile B., Rosenberger Ch., Laurent H., Unsupervised performance evaluation of image segmentation, EURASIP Journal on Applied Signal Processing, 2006, pp. 1-12.
  12. Ekstrand S., Assessement of Forest Damage with Landsat-TM, Remote Sensing of Enviroment, 1994, Vol. 47, No. 3, pp. 291-302.
  13. Guarnieri A, Vettore A., Automated techniques for satellite image segmentation, Proceedings of Commission IV Symposium “Geospatial Theory, Processing and Applications”, 2002.
  14. Kothe U., Sagerer G., Posch S., Kummert F., Primary Image Segmentation, Mustererkennung DAGM-Symposium, 1995, Vol. 17, pp. 554-561.
  15. Laliberte A.S., Rango A., Havstad K.M., Paris J.F., Beck R.F., McNeely R., Gonzalez A.L., Object-oriented image analysis for mapping shrub encroachment from 1937 to 2003 in southern New Mexico, Remote Sensing of Environment, 2004, Vol. 93, pp. 198-210.
  16. Lucchese L., Mitra S., Color Image Segmentation: A State-of-the-Art Survey, Image Processing, Vision and Pattern Recognition, Proceedings of the Indian National Science Academy (INSA-A), New Delhi, India, 2001, pp. 207221.
  17. Rehrmann V, Priese L., Fast and Robust Segmentation of Natural Color Scenes, Proceedings of the Third Asian Conference on Computer Vision, 1998, Vol. 1, pp. 598-606.
  18. Schiewe, J., Segmentation of high-resolution remotely sensed data: concepts, applications and problems, International Archives of Photogrammetry and Remote Sensing, 2002, Vol. 34, pp. 380-385.
  19. Skarbek W., Koschan A., Color Image segmentation – a survey, Technical Report 94-32, Technical University Berlin, 1994, pp. 80.
  20. Theodoridis S., Koutroumbas K., Pattern Recognition, London: Academic Press, 2003, 689 p.
  21. Vergés-Llahí J., Color Constancy and Image Segmentation Techniques for Applications to Mobile Robotics, Dissertation of UPL, 2005, p. 231.
  22. Zhang Y., A survey on evaluation methods for image segmentation, Pattern Recognition, 1996, Vol. 29, No. 8, pp. 1335-1346.