ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 6, pp. 298-311

Using satellite altimetry to study mesoscale eddies and coastal wave processes near the Kamchatka coast

S.P. Khudyakova 1, 2 , T.V. Belonenko 1 , A.V. Kochnev 3 
1 Saint Petersburg State University, Saint Petersburg, Russia
2 V.I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
3 Northern (Arctic) Federal University, Arkhangelsk, Russia
Accepted: 09.10.2025
DOI: 10.21046/2070-7401-2025-22-6-298-311
The study examines the role of mesoscale eddies in shaping the coastal dynamics off the eastern coast of Kamchatka, with particular focus on the Kamchatka Strait region where eddy activity is most intense. It is shown that anticyclonic and cyclonic structures form in different zones of the East Kamchatka Current, exhibiting spatial asymmetry: anticyclones are located closer to the coast, while cyclones form near the continental slope edge. Analysis of satellite and model data (META3.2 and GLORYS12V1) reveals that mesoscale eddies play a key role in the seasonal and interannual modulation of volume, heat, and salt transport, primarily supporting the southward export of water from the Bering Sea to the northwestern Pacific. Considering that theoretical studies indicate the ability of mesoscale eddies to initiate low-frequency disturbances, including shelf and internal Kelvin waves, the obtained estimates of their spatial and temporal characteristics in the Kamchatka Strait region — radii of about 70–80 km and drift speeds of 10–13 cm/s — suggest that these structures may act as potential generators of coastal and planetary waves with comparable scales. Thus, the results highlight the significance of mesoscale eddies not only as active participants in water exchange but also as sensitive indicators of large-scale oceanic dynamics, offering a valuable tool for diagnosing low-frequency variability in physically complex and poorly studied coastal regions.
Keywords: satellite data, altimetry, mesoscale eddies, Kamchatka Strait, planetary waves, Kelvin waves, shelf waves, vortex dynamics, META3.2, GLORYS12V1
Full text

References:

  1. Belonenko T. V., Kubryakov A. A., Temporal variability of the phase velocity of Rossby waves in the North Pacific, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, V. 11, No. 3, pp. 9–18 (in Russian).
  2. Belonenko T. V., Frolova A. V., Antarctic Circumpolar Current as a waveguide for Rossby waves and mesoscale eddies, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, V. 16, No. 1, pp. 181–190 (in Russian), DOI: 10.21046/2070-7401-2019-16-1-181-190.
  3. Belonenko T. V., Zakharchuk E. A., Fuks V. R., Gradientno-vikhrevye volny v okeane (Gradient-vortical waves in the ocean), Saint Petersburg: Izd. Sankt-Peterburgskogo universiteta, 2004, 215 p. (in Russian).
  4. Belonenko T. V., Kubryakov A. A., Stanichny S. V., Spectral characteristics of Rossby waves in the Northwestern Pacific based on satellite altimetry, Izvestiya, Atmospheric and Oceanic Physics, 2016, V. 52, No. 9, pp. 920–928, DOI: 10.1134/S0001433816090073.
  5. Belonenko T. V., Volkov D. L., Koldunov A. V., Shelf waves in the Beaufort Sea in a high-resolution ocean model, Oceanology, 2018, V. 58, Iss. 6, pp. 778–785, DOI: 10.1134/S0001437018060024.
  6. Belonenko T. V., Travkin V. S., Gnevyshev V. G., Kochnev A. V., Influence of topography on the movement of mesoscale eddies along the continental slope of the New Zealand Plateau, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, V. 21, No. 6, pp. 253–266 (in Russian), DOI: 10.21046/2070-7401-2024-21-6-253-266.
  7. Vlasova G. A., Marchenko S. S., Rudykh N. I., Spring hydrodynamic regime in the Kamchatka Strait in 1950–2017, Vestnik Moskovskogo Universiteta. Ser. 5. Geografiya, 2022, No. 4, pp. 79–87 (in Russian).
  8. Gnevyshev V. G., Belonenko T. V., Doppler effect and Rossby waves in the ocean: A brief history and new approaches, Fundamental and Applied Hydrophysics, 2023, V. 16, No. 3, pp. 72–92 (in Russian), DOI: 10.59887/2073-6673.2023.16(3)-6.
  9. Gnevyshev V. G., Frolova A. V., Kubryakov A. A. et al., Interaction between Rossby waves and a jet flow: basic equations and verification for the antarctic circumpolar current, Izvestiya, Atmospheric and Oceanic Physics, 2019, V. 55, No. 5, pp. 412–422, DOI: 10.1134/S0001433819050074.
  10. Gnevyshev V. G., Frolova A. V., Koldunov A. V., Belonenko T. V., Topographic effect for Rossby waves on a zonal shear flow, Fundamental and Applied Hydrophysics, 2021, V. 14, No. 1, pp. 4–14 (in Russian), DOI: 10.7868/S2073667321010019.
  11. Gnevyshev V. G., Travkin V. S., Belonenko T. V. (2023a), Group velocity and dispersion of Buchwald and Adams shelf waves. A new analytical approach, Fundamental and Applied Hydrophysics, 2023, V. 16, No. 2, pp. 8–20 (in Russian), DOI: 10.59887/2073-6673.2023.16(2)-1.
  12. Gnevyshev V. G., Travkin V. S., Belonenko T. V. (2023b), Topographic factor and limit transitions in the equations for subinertial waves, Fundamental and Applied Hydrophysics, 2023, V. 16, No. 1, pp. 8–23 (in Russian), DOI: 10.48612/fpg/92rg-6t7h-m4a2.
  13. Rogachev K. A., Gorin I. I., Mass transport and long-term evolution of the Kamchatka Current eddies, Oceanologiya, 2004, V. 44, No. 1, pp. 19–25 (in Russian).
  14. Rogachev K. A., Shlyk N. V., Role of mesoscale eddies in the dynamics of the Kamchatka and Alaskan currents, Izvestiya TINRO, 2006, V. 145, pp. 228–234 (in Russian).
  15. Sandalyuk N. V., Belonenko T. V., Koldunov A. V., Shelf waves in the Great Australian Bight based on satellite altimetry data, Izvestiya, Atmospheric and Oceanic Physics, 2021, V. 57, pp. 1117–1126, DOI: 10.1134/S0001433821090619.
  16. Travkin V. S., Belonenko T. V., Kochnev A. V., Topographic waves in the Kuril region, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, V. 19, No. 5, pp. 222–234 (in Russian), DOI: 10.21046/2070-7401-2022-19-5-222-234.
  17. Andreev A., Pipko I., Water circulation, temperature, salinity, and pCO2 distribution in the surface layer of the East Kamchatka Current, J. Marine Science and Engineering, 2022, V. 10, No. 11, Article 1787, DOI: 10.3390/jmse10111787.
  18. Andreev A. G., Shevchenko G. V., Interannual variability of water transport by the East Kamchatka and East Sakhalin Currents and their influence on dissolved oxygen concentration in the Sea of Okhotsk and subarctic Pacific, Russian Meteorology and Hydrology, 2008, V. 33, No. 10, pp. 657–664, DOI: 10.3103/S1068373908100075.
  19. Belonenko T. V., Bashmachnikov I. L., Kubryakov A. A., Horizontal advection of temperature and salinity by Rossby waves in the North Pacific, Intern. J. Remote Sensing, 2018, V. 39, Iss. 8, pp. 2177–2188, DOI: 10.1080/01431161.2017.1420932.
  20. Fedorov A. M., Belonenko T. V., Interaction of mesoscale vortices in the Lofoten Basin based on the GLORYS database, Russian J. Earth Sciences, 2020, V. 20, No. 2, Article ES2002, DOI: 10.2205/2020ES000694.
  21. Gill A. E., Atmosphere-Ocean Dynamics, Academic Press, 1982, 680 p.
  22. Gnevyshev V. G., Frolova A. V., Kubryakov A. A. et al., Interaction between Rossby Waves and a jet flow: Basic equations and verification for the Antarctic Circumpolar Current, Izvestiya, Atmospheric and Oceanic Physics, 2019, V. 55, No. 5, pp. 412–422, DOI: 10.1134/S0001433819050074.
  23. Gnevyshev V. G., Malysheva A. A., Belonenko T. V., Koldunov A. V., On Agulhas eddies and Rossby waves travelling by forcing effects, Russian J. Earth Sciences, 2021, V. 21, No. 5, Article ES5003, DOI: 10.2205/2021ES000773.
  24. Hasselmann K., An ocean model for climate variability studies, Progress in Oceanography, 1982, V. 11, No. 2, pp. 69–92, DOI: 10.1016/0079-6611(82)90004-0.
  25. Kinney J. C., Maslowski W., On the oceanic communication between the Western Subarctic Gyre and the deep Bering Sea, Deep Sea Research Pt. I: Oceanographic Research Papers, 2012, V. 66, pp. 11–25, DOI: 10.1016/j.dsr.2012.04.001.
  26. LeBlond P. H., Mysak L. A., Waves in the Ocean, Elsevier Oceanography Series, V. 20, Elsevier, 1981, 602 p.
  27. Nishioka J., Hirawake T., Nomura D. et al., Iron and nutrient dynamics along the East Kamchatka Current, western Bering Sea Basin and Gulf of Anadyr, Progress in Oceanography, 2021, V. 198, Article 102662, DOI: 10.1016/j.pocean.2021.102662.
  28. Pegliasco C., Busché C., Faugère Y., Mesoscale Eddy Trajectory Atlas META3.2 Delayed-Time all satellites: version META3.2 DT allsat, 2022, DOI: 10.24400/527896/A01-2022.005.210802.
  29. Prants S. V., Budyansky M. V., Lobanov V. B. et al., Observation and Lagrangian analysis of quasi-stationary Kamchatka trench eddies, J. Geophysical Research: Oceans, 2020, V. 125, No. 6, Article e2020JC016187, DOI: 10.1029/2020JC016187.
  30. Rogachev K. A., Shlyk N. V., The role of the Aleutian eddies in the Kamchatka current warming, Russian Meteorology and Hydrology, 2018, V. 43, pp. 43–48, DOI: 10.3103/S1068373918010065.
  31. Rogachev K. A., Shlyk N. V., Characteristics of the Kamchatka Current eddies, Russian Meteorology and Hydrology, 2019, V. 44, pp. 416–423, DOI: 10.3103/S1068373919060062.
  32. Rogachev K., Shlyk N., Record-breaking warming in the Kamchatka Current halocline, Ocean Dynamics, 2021, V. 71, No. 5, pp. 545–557, DOI: 10.1007/s10236-021-01445-0.
  33. Rogachev K. A., Shlyk N. V., Cooling of the Oyashio and Kamchatka Current halocline in extreme years, Russian Meteorology and Hydrology, 2025, V. 50, No. 2, pp. 139–145, DOI: 10.3103/S1068373925020062.
  34. Solomon H., Ahlnäs K., Eddies in the Kamchatka Current, Deep Sea Research, 1978, V. 25, No. 4, pp. 403–410.