ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 6, pp. 326-336

Features of changes in surface temperature of the Sea of Azov in the 21st century according to satellite data

S.V. Stanichny 1 , N.V. Vasilenko 1 , V.A. Rubakina 1 , A.A. Kubryakov 1 , V.V. Kulygin 2 , S.V. Berdnikov 2 
1 Marine Hydrophysical Institute RAS, Sevastopol, Russia
2 Southern Scientific Centre RAS, Rostov-on-Don, Russia
Accepted: 05.11.2025
DOI: 10.21046/2070-7401-2025-22-6-326-336
The article considers changes in surface layer temperature in the central part of the Sea of Azov and in the Taganrog Bay on the basis of MODIS (Moderate Resolution Imaging Spectroradiometer) scanner data from 2003 to 2024. Features in the annual temperature course in the specified water areas are shown: with almost identical amplitudes of the annual course, the waters of the Taganrog Bay warm up earlier in spring and cool down faster in autumn. With a general warming of the waters over the period under consideration, the trends for different months differ significantly: in April and November the value of the positive trend reaches 0.013°C/year, and in October the trend is negative –0.05…–0.08°C/year. Based on a comprehensive analysis of SEVIRI (Spinning Enhanced Visible and InfraRed Imager) scanner data, situations of anomalous daytime heating are considered using wind speed data and temperature maps from AVHRR (Advanced Very High Resolution Radiometer), VIIRS (Visible Infrared Imaging Radiometer Suite) and TIRS (Thermal InfraRed Sensor) scanners. In calm conditions, the amplitude of daytime heating can exceed 8°C. The possible influence of water turbidity and the presence of cyanobacteria with pigments absorbing in the optical range on the amplitude of the diurnal temperature variation is shown.
Keywords: sea surface temperature, Sea of Azov, Taganrog Bay, daytime heating, MODIS, SEVIRI, AVHRR, satellite data
Full text

References:

  1. Aleskerova A. A., Kubryakov A. A., Stanichny S. V., A two-channel method for retrieval of the Black Sea surface temperature from Landsat-8 measurements, Izvestiya, Atmospheric and Oceanic Physics, 2016, V. 52, No. 9, pp. 1155–1161, DOI: 10.1134/S0001433816090048.
  2. Berdnikov S. V., Dashkevich L. V., Kulygin V. V., Climatic conditions and hydrological regime of the sea of Azov in the XX – early XXI centuries, Aquatic Bioresources and Environment, 2019, V. 2, No. 2, pp. 7–19 (in Russian), DOI: 10.47921/2619-1024_2019_2_2_7.
  3. Berdnikov S. V., Kulygin V. V., Dashkevich L. V., Reasons for rapid increase of water salinity in the Sea of Azov in the 21st century, Physical Oceanography, 2023, 30(6), pp. 714–730.
  4. Borovskaya R. V., Panov B. N., System of satellite biooceanologic monitoring of the Azov-Black Sea basin, Uchenye zapiski Krymskogo federal’nogo universiteta imeni V. I. Vernadskogo. Geografiya. Geologiya, 2009, V. 22, No. 2, pp. 41–49 (in Russian).
  5. Gershanovich D. E., Goptarev N. P., Zatuchnaya B. M., Simonov A. I., Gidrometeorologiya i gidrokhimiya morei SSSR. T. 5. Azovskoe more (Hydrometeorology and hydrochemistry of the seas of the USSR. V. 5. Sea of Azov), Saint Petersburg: Gidrometeozidat, 1991, 235 p. (in Russian).
  6. Ginzburg A. I., Kostianoy A. G., Sheremet N. A., The Black and Azov seas: a comparative analysis of the sea surface temperature variability (1982–2009, satellite information), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, V. 8, No. 4, pp. 209–218 (in Russian).
  7. Ginzburg A. I., Kostianoy A. G., Serykh I. V., Lebedev S. A., Climate change in the hydrometeorological parameters of the Black and Azov Seas (1980–2020), Oceanology, 2021, V. 61, No. 6, pp. 745–756, DOI: 10.1134/S0001437021060060.
  8. Grigorenko K. S., Oleynikov E. P., Grigorenko E. G., Influence of the Don River seasonal flood 2018 on the Sea of Azov thermohaline structure, Science in the South of Russia, 2019, V. 15, No. 3, pp. 63–69 (in Russian), DOI: 10.7868/S25000640190307.
  9. Dashkevich L. V., Long-term trends in changes in meteorological parameters of the Sea of Azov region, Ehkologiya. Ehkonomika. Informatika. Ser.: Sistemnyi analiz i modelirovanie ehkonomicheskikh i ehkologicheskikh sistem, 2020, V. 1, No. 5, pp. 130–137 (in Russian), DOI: 10.23885/2500-395X-2020-1-5-130-137.
  10. Dashkevich L. V., Kulygin V. V., Comparative analysis of average long-term distribution of temperature of water of the Sea of Azov through seasons, Vestnik Yuzhnogo nauchnogo tsentra RAN, 2008, V. 4, No. 3, pp. 64–71 (in Russian).
  11. Dashkevich L. V., Kulygin V. V., The average temperature assessment of the surface layer of the Sea of Azov based on satellite imagery and observations at coastal hydrometeorological stations, InterKarto. InterGIS, 2019, V. 25, No. 2, pp. 112–120 (in Russian), DOI: 10.35595/2414-9179-2019-2-25-112-120.
  12. Il’in Yu. P., Fomin V. V., D’yakov N. N., Gorbach S. B., Gidrometeorologicheskie usloviya morei Ukrainy. T. 1. Azovskoe more (Hydrometeorological conditions of Ukrainian seas. V. 1. Sea of Azov), Sevastopol, 2009, 401 p. (in Russian).
  13. Ioshpa A. R., Antonenko V. V., Stryuckaya A. O., Especially multi-year dynamics of water temperature in the Sea of Azov, Ehkologiya. Ehkonomika. Informatika. Ser.: Geoinformatsionnye tekhnologii i kosmicheskii monitoring, 2019, No. 4, pp. 223–226 (in Russian), DOI: 10.23885/2500-123X-2019-2-4-223-226.
  14. Kovaleva G. V., The problem of “water blooming” in the Taganrog Bay and estuaries of the eastern coast of the Sea of Azov, Ehkologiya. Ehkonomika. Informatika. Ser.: Sistemnyi analiz i modelirovanie ehkonomicheskikh i ehkologicheskikh sistem, 2019, V. 1, No. 4, pp. 186–193 (in Russian), DOI: 10.23885/2500-395X-2019-1-4-186-193.
  15. Kochergin A. T., Inter-annual variability of the water temperature in the Azov sea and its regions in the summer season of 1992–2016, Aquatic Bioresources and Environment, 2018, V. 1. No. 2, pp. 12–17 (in Russian), DOI: 10.47921/2619-1024_2018_1_2_12.
  16. Kushnir V. M., Characteristics of the near-surface layer of the Sea of Azov based on data from optical scanners of the MODIS system, Issledovanie Zemli iz kosmosa, 2009, No. 3, pp. 35–46 (in Russian).
  17. Lavrova O. Yu., Kostianoy A. G., Lebedev S. A., Mityagina M. I., Ginzburg A. I., Sheremet N. A., Kompleksnyi sputnikovyi monitoring morei Rossii (Complex satellite monitoring of the Russian seas), Moscow: IKI RAS, 2011, 472 p. (in Russian).
  18. Matishov G. G., Matishov D. G., Berdnikov S. V. et al., Secular climate fluctuations in the Sea of Azov region (based on thermohaline data over 120 years), Doklady Earth Sciences, 2008, V. 422, No. 1, pp. 1101–1104, DOI: 10.1134/S1028334X08070222.
  19. Spiridonova E. O., Panov B. N., hanges of the structure indicators and the salinity field average value in the Sea of Azov, Physical Oceanography, 2021, V. 28(3), pp. 282–293, DOI: 10.22449/1573-160X-2021-3-282-293.
  20. Bryant D. A., Phycoerythrocyanin and phycoerythrin: properties and occurrence in cyanobacteria, Microbiology, 1982, V. 128, No. 4, pp. 835–844.