ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 6, pp. 125-136

Algorithm for extending the ballistic lifetime of a small Earth remote sensing spacecraft

O.D. Zhaldybina 1 , M.A. Ivanushkin 1, 2 , M.R. Mordanov 1 , I.S. Tkachenko 1 , T.V. Starostina 1 
1 Samara National Research University, Samara, Russia
2 Image Processing Systems Institute ― Branch of Federal Scientific Research Centre “Crystallography and Photonics” RAS, Samara, Russia
Accepted: 27.11.2025
DOI: 10.21046/2070-7401-2025-22-6-125-136
The paper deals with small Earth remote sensing spacecrafts. The purpose of the study is to analyze the influence of solar activity and residual atmosphere density on spacecrafts with an orbital altitude below 1000 km to increase their ballistic lifetime without a corrective propulsion system on board. Within the research, the factors influencing the evolution of the orbital parameters of the Aist-2D satellite are analyzed, and methods of controlling the orbital motion of a spacecraft without a corrective propulsion system are investigated. Dependencies of the perigee argument, orbital inclination, eccentricity, longitude of the ascending node, and orbital altitude of the satellite on time are plotted. Modeling of the orbital motion of Aist-2D at three orientation variants is carried out: solar orientation, orientation intended for imaging and communication with the ground station of information reception and transmission, mode with minimum midship area. A method for increasing the ballistic lifetime of satellites in low Earth orbit is proposed. The ballistic lifetime of a small spacecraft type Aist-2D can be extended by 135 days if the satellite operates according to the cyclogram proposed in this paper. An algorithm is developed to increase the ballistic lifetime of small spacecraft in low Earth orbit. The results of this research can be used in the development of small satellites.
Keywords: small spacecraft, Earth remote sensing, corrective propulsion system, residual atmosphere, solar activity
Full text

References:

  1. GOST R 25645.166-2004 “Atmosfera Zemli verkhnyaya. Model’ plotnosti dlya ballisticheskogo obespecheniya poletov iskusstvennykh sputnikov Zemli” (GOST R 25645.166-2004 “Upper Earth atmosphere. Density model for ballistic support of artificial earth satellite flights”), Moscow: IPK Izd. standartov, 2004, 28 p. (in Russian).
  2. Kirilin A. N., Akhmetov R. N., Shakhmatov E. V., Tkachenko S. I., Baklanov A. I., Salmin V. V., Semkin N. D., Tkachenko I. S., Goryachkin O. V. (2017a), Opytno-tekhnologicheskiy malyi kosmicheskii apparat “AIST-2D” (Experimental and technological small spacecraft “AIST-2D”), Samara: SamNTs RAN, 2017, 324 p. (in Russian).
  3. Kirilin A. N., Tkachenko S. I., Salmin V. V., Tkachenko I. S., Semkin N. D., Safronov S. L., Abrashkin V. I. (2017b), Malye kosmicheskie apparaty serii “AIST”. Proektirovanie, ispytaniya, ehkspluatatsiya, razvitie (Small spacecraft of the “AIST” series. Design, testing, operation, development), A. N. Kirilin (ed.), Samara: Izd. Samarskogo nauchnogo tsentra RAN, 2017, 345 p. (in Russian).
  4. Kolovskiy I. K., Podolyakin V. N., Shmakov D. N., Assessment of the use of NORAD ballistic data for “Gonets-M” spacecraft in low circular orbit, Reshetnev readings, 2018, V. 1, pp. 32–33 (in Russian).
  5. Kuznetsov V. D., Space weather and risks of space activities, Space Engineering and Tecnology, 2014, No. 3, Iss. 6, pp. 3–13 (in Russian).
  6. Safronov S. L., Tkachenko I. S., Ivanushkin M. A., Volgin S. S., Sovremennye podkhody k sozdaniyu malykh kosmicheskikh apparatov distantsionnogo zondirovaniya Zemli na baze unifitsirovannykh platform (Modern approaches to creating small Earth remote sensing spacecraft based on unified platforms), Samara: Izd. Samarskogo universiteta, 2019, 276 p. (in Russian).
  7. Akhmetov R., Filatov A., Khalilov R. et al., “AIST-2D”: Results of flight tests and application of earth remote sensing data for solving thematic problems, Egyptian J. Remote Sensing and Space Sciences, 2023, V. 26, No. 3, pp. 427–454, DOI: 10.1016/j.ejrs.2023.06.003.
  8. De Lafontaine J., Hughes P., An analytic version of Jacchia’s 1977 model atmosphere, Celestial Mechanics, 1983, V. 29, pp. 3–26, DOI: 10.1007/BF01358595.
  9. Foster C., Mason J., Vittaldev V. et al., Constellation phasing with differential drag on planet labs satellites, J. Spacecraft and Rockets, 2017, V. 55, pp. 473–483, DOI: 10.2514/1.A33927.
  10. Ivliev N., Podlipnov V., Petrov M. et al., 3U CubeSat-based hyperspectral remote sensing by Offner imaging hyperspectrometer with radially-fastened primary elements, Sensors, 2024, V. 24, No. 9, Article 2885, 21 p., DOI: 10.3390/s24092885.
  11. Krueger A. J., Minzner R. A., A mid-latitude ozone model for the 1976 U. S. Standard Atmosphere, J. Geophysical Research, 1976, V. 81, pp. 4477–4481, DOI: 10.1029/JC081i024p04477.
  12. Lee C., Cable M., Hook S. et al., An introduction to the NASA Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities, Remote Sensing of Environment, 2015, V. 167, pp. 6–19, DOI: 10.1016/j.rse.2015.06.012.