Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 6, pp. 412-418
Determination of the soil line from VIIRS data using MODIS clean fallow map and iterative regression equation search
D.E. Plotnikov
1 , E.S. Elkina
1, 2 , P.A. Kolbudaev
1 , M.A. Burtsev
1 , A.M. Matveev
1 , А.М. Konstantinova
1, 2 1 Space Research Institute RAS, Moscow, Russia
2 Research Institute of Agriculture of Crimea, Simferopol, Russia
Accepted: 27.11.2025
DOI: 10.21046/2070-7401-2025-22-6-412-418
The paper describes new daily cloud-free Time Series Enhancement (TSE) products for the Perpendicular Vegetation Index (PVI) based on soil line equation derived from V*09GA (VNP09GA and VJ109GA) Collection 2 data acquired by the Visible Infrared Imaging Radiometer Suite (VIIRS) instruments on the NOAA and SNPP satellite platforms. A 2022 clean fallow mask, regularly updated for cropland of Russia using Moderate Resolution Imaging Spectroradiometer (MODIS) data, was employed to identify bare soil areas for constructing the equation. An iterative soil line equation search method was applied due to the inability to directly use the clean fallow map with VIIRS products, a consequence of the non-integer difference in spatial resolution between MODIS and VIIRS sensors, and to minimize errors in feature and brightness value co-registration caused by significant geolocation inaccuracies in the 500-meter V*09GA product. The study utilized reconstructed daily cloud-free VIIRS imagery (Historical TSE product) in the red and near-infrared (NIR) bands, along with their corresponding Normalized Difference Vegetation Index (NDVI) images. The analysis involved iterative outlier filtering for the point cloud corresponding to bare soil in the VIIRS red and NIR measurement space, using 0.95 confidence intervals as the point cloud boundaries. The process included monitoring the convergence of both coefficients of the resulting regression line until the difference fell below a threshold level of 1%. Upon convergence, the final VIIRS soil line equation was obtained from V*09GA Collection 2 data with a coefficient of determination R2 = 0.973. This equation was then used in the formula to calculate the PVI from the respective VIIRS Collection 2 products.
Keywords: VIIRS, HiTSE, LOWESS, soil line, vegetation indices, iterative search, confidence intervals
Full textReferences:
- Dunaeva Ie. A., Plotnikov D. E., Khvostikov S. A. et al., Use of remote sensing data for early diagnostics of the dry conditions action, Taurida Herald of the Agrarian Sciences, 2019, No. 4 (20), pp. 28–45 (in Russian), DOI: 10.33952/2542-0720-2019-4-20-28-45.
- Elkina E. S., Plotnikov D. E., Dunaeva E. A., Discovering the possibility for irrigated lands identification with remote sensing data over Republic of Crimea based on spectral-temporal and thermal features, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, V. 21, No. 5, pp. 379–386 (in Russian), DOI: 10.21046/2070-7401-2024-21-5-379-386.
- Knyazeva S. V., Nikitina A. D., Belova Ye.I. et al., Methods and approaches to the estimation of forest characteristics using the optical satellite data of very high spatial resolution, Lesovedenie, 2021, No. 6, pp. 645–672 (in Russian), DOI: 10.31857/S0024114821060073.
- Loupian E. A., Bartalev S. A., Krasheninnikova Yu. S. et al., Analysis of winter crops development in the southern regions of the European part of Russia in spring of 2018 with use of remote monitoring, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, V. 15, No. 2, pp. 272–276 (in Russian), DOI: 10.21046/2070-7401-2018-15-2-272-276.
- Loupian E. A., Proshin A. A., Burtsev M. A. et al., Experience of development and operation of the IKI-Monitoring center for collective use of systems for archiving, processing and analyzing satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, V. 16, No. 3, pp. 151–170 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-151-170.
- Plotnikov D. E., Bartalev S. A., Loupian E. A., Savin I. Yu., Use of data from satellite radiometer MODIS for cropland, clean fallow and winter crops mapping, Materialy Vserossiiskoi nauchnoi konferentsii “Metodicheskoe obespechenie monitoringa zemel’ sel’skokhozyaistvennogo naznacheniya” (Proc. All-Russia Scientific Conf. “Methodological Support for Monitoring Agricultural Lands”), Book of scientific papers, Moscow: RASKhN, 2010, pp. 417–422 (in Russian).
- Plotnikov D. E., Khvostikov S. A., Bartalev S. A., Method for automated crop types mapping using remote sensing data and a plant growth simulation model, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, V. 15, No. 4, pp. 131–141 (in Russian), DOI: 10.21046/2070-7401-2018-15-4-131-141.
- Plotnikov D. E., Elkina E. S., Dunaeva Ie. A. et al. (2020a), Development of the method for automatic winter crops mapping by means of remote sensing aimed at crops state assessment over the Republic of Crimea, Taurida Herald of the Agrarian Sciences, 2020, No. 1(21), pp. 64–83 (in Russian), DOI: 10.33952/2542-0720-2020-1-21-64-83.
- Plotnikov D. E., Kolbudaev P. A., Zhukov B. S. et al. (2020b), The collection of multispectral KMSS-M (Meteor-M No. 2) satellite data aimed at quantitative assessment of the Earth surface, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, V. 17, No. 7, pp. 276–282 (in Russian), DOI: 10.21046/2070-7401-2020-17-7-276-282.
- Plotnikov D. E., Boimatov Yu. Sh., Elkina E. S. et al., Performance assessment of multi-season machine learning models for large-scale in-season winter crops mapping, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, V. 21, No. 5, pp. 116–129 (in Russian), DOI: 10.21046/2070-7401-2024-21-5-116-129.
- Plotnikov D. E., Kolbudaev P. A., Matveev A. M., Proshin A. A. (2025a), Towards assessment of georeferencing accuracy for VIIRS (Suomi NPP) products, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 2, pp. 319–325 (in Russian), DOI: 10.21046/2070-7401-2025-22-2-319-325.
- Plotnikov D. E., Zhou Z., Kolbudaev P. A. et al. (2025b), Development and assessment of Leaf Area Index of Russia’s vegetation cover based on multi-angular observations by KMSS (Meteor-M) and neural network inversion of PROSAIL model, Computer optics, 2025, V. 49, No. 3, pp. 504–518 (in Russian), DOI: 10.18287/2412-6179-CO-1621.
- Plotnikova A. S., Ershov D. V., Kharitonova A. O. et al., Spatial assessment of modern forest fire regimes in Russia, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, V. 16, No. 5, pp. 228–240 (in Russian), DOI: 10.21046/2070-7401-2019-16-5-228-240.
- Sereda I. I., Denisov P. V., Troshko K. A. et al., The unique situation of winter crops development observed from remote sensing data in the European territory of Russia in October 2020, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, V. 17, No. 5, pp. 304–310 (in Russian), DOI: 10.21046/2070-7401-2020-17-5-304-310.
- Troshko K.A, Denisov P. V., Loupian E. A. et al., The state of grain crops in the European part of Russia and Siberia in June 2021 based on remote sensing data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, V. 18, No. 3, pp. 325–331 (in Russian), DOI: 10.21046/2070-7401-2021-18-3-325-331.
- Shabanov N. V., Bartalev S. A., Eroshenko F. V., Plotnikov D. E., Development of capabilities for remote sensing estimate of Leaf Area Index from MODIS data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, V. 15, No. 4, pp. 166–178 (in Russian), DOI: 10.21046/2070-7401-2018-15-4-166-178.
- Baret F., Jacquemoud S., Hanocq J. F., About the soil line concept in remote sensing, Advances in Space Research, 1993, V. 13, Iss. 5, P. 281–284, DOI: 10.1016/0273-1177(93)90560-X.
- Plotnikov D., Kolbudaev P., Matveev A. et al., Daily surface reflectance reconstruction using LOWESS on the example of various satellite systems, 8 th Intern. Conf. on Information Technology and Nanotechnology (ITNT), 2022, 5 p., DOI: 10.1109/ITNT55410.2022.9848630.
- Plotnikov D., Kolbudaev P., Matveev A. et al., Accuracy assessment of atmospheric correction of KMSS-2 Meteor-M #2.2 data over northern Eurasia, Remote Sensing, 2023, V. 15, Iss. 18, Article 4395, DOI: 10.3390/rs15184395.
- Tiruneh G. A., Meshesha D. T., Adgo E. et al., Use of soil spectral reflectance to estimate texture and fertility affected by land management practices in Ethiopian tropical highland, PLoS ONE, 2022, V. 17(7), Article e0270629, DOI: 10.1371/journal.pone.0270629.