Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 5, pp. 9-25
Diagnostic features of severe convection. Part 1: Signatures derived from ground-based weather radar data
O.V. Kalmykova
1, 2 , A.A. Sprygin
1, 2 1 Research and Production Association “Typhoon”, Obninsk, Russia
2 A.M. Obukhov Institute of Atmospheric Physics RAS, Moscow, Russia
Accepted: 29.07.2025
DOI: 10.21046/2070-7401-2025-22-5-9-25
The work initiates a series of studies by the authors aimed at assessing the predictability potential of severe weather convective events over the European part of Russia and adjacent territories. This is based on an analysis of regional characteristics in the dynamics of mesoscale convective systems of various types and scales, utilizing a combination of different observational data and numerical modeling. In the first part of the study, a literature review of diagnostic features (signatures) of intense convective processes derived from ground-based radar observations is presented. This is the most well-documented (detailed) and widely represented class of signatures associated with intense convection. Radar signatures can serve as indicators of threats leading to severe weather convective events. The study analyzes 12 types of radar signatures, most commonly used in international practice, though some are also known in Russia. These include schematic representations (templates) of their manifestations, explanations of their formation mechanisms in the context of atmospheric dynamics within deep convective systems, their association with specific classes of convective systems and types of severe weather. The study also reviews existing methods for automated radar signature identification and presents cases demonstrating these signatures during convective storms accompanied by severe weather events across European Russia.
Keywords: diagnostic features, signatures, severe convection, radar observations, radar data, severe weather events, forecast, nowcasting
Full textReferences:
- Abshaev M. T., Abshaev A. M., Barekova M. V., Malkarova A. M., Rukovodstvo po organizatsii i provedeniyu protivogradovykh rabot (Guidelines for organizing and conducting anti-hail work), Nalchik, 2014, 500 p. (in Russian).
- Abshaev M. T., Abshaev A. M., Sinkevich A. A. et al., Features of development of a supercell convective cloud at the stage of maximum lightning activity (August 19, 2015, the North Caucausus), Russian Meteorology and Hydrology, 2022, V. 47, No. 4, pp. 315–325, DOI: 10.3103/s1068373922040070.
- Brylev G. B., Gaschina S. B., Nizdoiminoga G. L., Radiolokatsionnye kharakteristiki oblakov i osadkov (Radar characteristics of clouds and precipitation), Leningrad: Gidrometeoizdat, 1986, 234 p. (in Russian).
- Vremennye metodicheskie ukazaniya v oblasti aktivnogo vozdeistviya na meteorologicheskie i drugie geofizicheskie protsessy (zashchita sel’skokhozyaistvennykh rastenii ot gradobitiya) (Temporary methodical guidelines in the field of active influence on meteorological and other geophysical processes (protection of agricultural plants from hail)), 2021, 116 p. (in Russian), https://meganorm.ru/mega_doc/norm/akt_forma/1/vremennye_metodicheskie_ukazaniya_v_oblasti_aktivnogo.html.
- Zhukov V. B., Shchukin G. G., An example of observing a mesocyclone using a meteorological multiparameter radar, 7-e Vserossiyskie Armandovskie chteniya “Sovremennye problemy distantsionnogo zondirovaniya, radiolokatsii, rasprostraneniya i diffraktsii voln”: sbornik statei (Proc. 7th All-Russia Armandov Readings “Current Problems of Remote Sensing, Radar, Wave Propagation and Diffraction”), 2017, pp. 191–196 (in Russian).
- Novitskiy M. A., Pavlyukov Yu.B., Shmerlin B. Ya. et al., The tornado in Bashkortostan: The potential of analyzing and forecasting tornado-risk conditions, Russian Meteorology and Hydrology, 2016, V. 41, No. 10, pp. 683–690, DOI: 10.3103/S1068373916100034.
- Popov V. B., Sinkevich A. A., Mikhailovskii Y. P. et al., Characteristics and structure of the cumulonimbus cloud with waterspout over the gulf of Finland, Russian Meteorology and Hydrology, 2020, V. 45, No. 9, pp. 607–614, DOI: 10.3103/S1068373920090010.
- Chernokulsky A. V., Shikhov A. N., Azhigov I. O. et al., Squalls and tornadoes over the European territory of Russia on May 15, 2021: Diagnosis and modeling, Russian Meteorology and Hydrology, 2022, V. 47, No. 11, pp. 867–881, DOI: 10.3103/s1068373922110073.
- Atmospheric convection: Research and operational forecasting aspects, Giaiotti D. B., Steinacker R., Stel F. (eds.), Wien, Italy: Springer, 2007, 227 p., DOI: 10.1007/978-3-211-69291-2.
- Brotzge J. A., Nelson S. E., Thompson R. L., Smith B. T., Tornado probability of detection and lead time as a function of convective mode and environmental parameters, Weather and Forecasting, 2013, V. 28, No. 5, pp. 1261–1276, DOI: 10.1175/WAF-D-12-00119.1.
- Browning K., Some inferences about the updraft within a severe local storm, J. Atmospheric Sciences, 1965, V. 22, No. 6, pp. 669–677, DOI: 10.1175/1520-0469(1965)022<0669:SIATUW>2.0.CO;2.
- Bunkers M. J., Klimowski B. A., Zeitler J. W. et al., Predicting supercell motion using a new hodograph technique, Weather and Forecasting, 2000, V. 15, No. 1, pp. 61–79, DOI: 10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2.
- Bunkers M. J., Wilson M. B., Van Den Broeke M. S., Healey D. J., Scan-by-scan storm-motion deviations for concurrent tornadic and nontornadic supercells, Weather and Forecasting, 2022, V. 37, No. 5, pp. 749–770, DOI: 10.1175/WAF-D-21-0153.1.
- Doswell C. A., III, Burgess D. W., Tornadoes and tornadic storms: A review of conceptual models, In: The Tornado: Its Structure, Dynamics, Prediction and Hazards, Washington D. C.: American Geophysical Union, 1993, pp. 161–172, DOI: 10.1029/GM079p0161.
- Duda J. D., Gallus W. A., Jr., Spring and summer midwestern severe weather reports in supercells compared to other morphologies, Weather and Forecasting, 2010, V. 25, No. 1, pp. 190–206, DOI: 10.1175/2009WAF2222338.1.
- Elizaga F., Conejo S., Martin F., Automatic identification of mesocyclones and significant wind structures in Doppler radar images, Atmospheric Research, 2007, V. 83, No. 2–4, pp. 405–414, DOI: 10.1016/j.atmosres.2005.10.023.
- Falk K. W., Techniques for issuing severe thunderstorm and tornado warnings with the WSR-88D Doppler radar, 1997, 44 p.
- Forbes G. S., On the reliability of hook echoes as tornado indicators, Monthly Weather Review, 1981, V. 109, No. 7, pp. 1457–1466, DOI: 10.1175/1520-0493(1981)109<1457:OTROHE>2.0.CO;2.
- Groot E., Tost H., Divergent convective outflow in large-eddy simulations, Atmospheric Chemistry and Physics, 2023, V. 23, No. 11, pp. 6065–6081, DOI: 10.5194/acp-23-6065-2023.
- Heinselman P., LaDue D., Kingfield D., Hoffman R., Tornado warning using phased-array radar data, Weather and Forecasting, 2015, V. 30, pp. 57–78, DOI: 10.1175/WAF-D-14-00042.1.
- Hengstebeck T., Wapler K., Heizenreder D., Joe P., Network radar-based detection of mesocyclones at the German Meteorological Service, J. Atmospheric and Oceanic Technology, 2017, V. 35, No. 2, pp. 299–321, DOI: 10.1175/JTECH-D-16-0230.1.
- Homeyer C. R., Murillo E. M., Kumjian M., Relationships between 10 years of radar-observed supercell characteristics and hail potential, Monthly Weather Review, 2023, V. 151, No. 10, pp. 2609–2632, DOI: 10.1175/MWR-D-23-0019.1.
- House D. C., Air mass modification and upper-level divergence, Bull. American Meteorological Soc., 1958, V. 39, No. 3, pp. 137–143, DOI: 10.1175/1520-0477-39.3.137.
- Houze R. A., Jr., Rutledge S. A., Biggerstaff M. I., Smull B. F., Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems, Bull. American Meteorological Soc., 1989, V. 70, No. 6, pp. 608–619, DOI: 10.1175/1520-0477(1989)070<0608:IODWRD>2.0.CO;2.
- Kamani M. M., Farhat F., Wistar S., Wang J. Z., Shape matching using skeleton context for automated bow echo detection, 2016 IEEE Intern. Conf. on Big Data, Washington, DC, USA, 2016, pp. 901–908, DOI: 10.1109/BigData.2016.7840685.
- Kumjian M. R., Schenkman A. D., Interpretation of the “Flying Eagle” Radar Signature in supercells, 24 th Conf. on Severe Local Storms, Savanhah, Georgia, USA, 2008, 7 p.
- Lakshmanan V., Using a genetic algorithm to tune a bounded weak echo region detection algorithm, J. Applied Meteorology and Climatology, 2000, V. 39, pp. 222–230, DOI: 10.1175/1520-0450(2000)039<0222:UAGATT>2.0.CO;2.
- Lemon L. R., Wake vortex structure and aerodynamic origin in severe thunderstorms, J. Atmospheric Science, 1976, V. 33, pp. 678–685, DOI: 10.1175/1520-0469(1976)033<0678:WVSAAO>2.0.CO;2.
- Lemon L. R., New severe thunderstorm radar identification techniques and warning criteria: A preliminary report, 1977, 64 p.
- Lemon L. R., The radar “three-body scatter spike”: An operational large-hail signature, Weather and Forecasting, 1998, V. 13, No. 2, pp. 327–340, DOI: 10.1175/1520-0434(1998)013<0327:TRTBSS>2.0.CO;2.
- Lemon L. R., Doswell C. A., III, Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis, Monthly Weather Review, 1979, V. 107, No. 9, pp. 1184–1197, DOI: 10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2.
- Mahale V. N., Zhang G., Xue M., Fuzzy logic classification of S-band polarimetric radar echoes to identify three-body scattering and improve data quality, J. Applied Meteorology and Climatology, 2014, V. 53, No. 8, pp. 2017–2033, DOI: 10.1175/JAMC-D-13-0358.1.
- Markowski P. M., Hook echoes and rear-flank downdrafts: A review, Monthly Weather Review, 2002, V. 130, No. 4, pp. 852–876, DOI: 10.1175/1520-0493(2002)130<0852:HEARFD>2.0.CO;2.
- Marwitz J. D., The structure and motion of severe hailstorms. Pt. I: Supercell storms, J. Applied Meteorology and Climatology, 1972, V. 11, No. 1, pp. 166–179, DOI: 10.1175/1520-0450(1972)011<0166:TSAMOS>2.0.CO;2.
- Meng L., Sang Y., Tang J., Automatic identification of three-body scatter spike based on Jensen–Shannon divergence and support vector machine, J. Applied Meteorology and Climatology, 2024, V. 63, No. 9, pp. 981–996, DOI: 10.1175/JAMC-D-24-0024.1.
- Mounier A., Raynaud L., Rottner L. et al., Detection of bow echoes in kilometer-scale forecasts using a convolutional neural network, Artificial Intelligence for the Earth Systems, 2022, V. 1, No. 2, 20 p., DOI: 10.1175/AIES-D-21-0010.1.
- Pal N. R., Mandal K., Pal S. et al., Fuzzy rule–based approach for detection of bounded weak-echo regions in radar images, J. Applied Meteorology and Climatology, 2006, V. 45, No. 9, pp. 1304–1312, DOI: 10.1175/JAM2408.1.
- Pilorz W., Lupikasza E., Radar reflectivity signatures and possible lead times of warnings for very large hail in Poland based on data from 2007–2015, Environmental and Socio-economic Studies, 2020, V. 8, No. 3, pp. 34–47, DOI: 10.2478/environ-2020-0016.
- Rotunno R., Klemp J. B., On the rotation and propagation of simulated supercell thunderstorms, J. Atmospheric Sciences, 1985, V. 42, No. 3, pp. 271–292, DOI: 10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2.
- Sassa K., Yamawaki M., Tanase H., Kubo T., Honda R., Automatic detection of hook echo by deep learning, Japan Geoscience Union Meetting 2022, 2022, https://confit.atlas.jp/guide/event/jpgu2022/subject/MGI35-02/detail.
- Shi J., Ping W., Wang D., Jia H., Radar-based automatic identification and quantification of weak echo regions for hail nowcasting, Atmosphere, 2019, V. 10, No. 6, 21 p., DOI: 10.3390/atmos10060325.
- Stout G. E., Huff F. A., Radar records Illinois tornadogenesis, Bull. American Meteorological Soc., 1953, V. 34, No. 6, pp. 281–284, DOI: 10.1175/1520-0477-34.6.281.
- Stumpf G. J., Witt A., Mitchell D. E. et al., The national severe storms laboratory mesocyclone detection algorithm for the WSR-88D, Weather and Forecasting, 1998, V. 13, No. 2, pp. 304–326, DOI: 10.1175/1520-0434(1998)013<0304:TNSSLM>2.0.CO;2.
- Wakimoto R. M., Convectively driven high wind events, In: Severe Convective Storms, Boston: American Meteorological Soc., 2001, pp. 255–298, DOI: 10.1175/0065-9401-28.50.255.
- Wang H., Mercer R. E., Barron J., Joe P., Skeleton based hook echo detection, Proc. 2007 IEEE Intern. Conf. on Image Processing, ICIP 2007, San Antonio, Texas, USA, 2007, P. VI-361–VI-364, DOI: 10.1109/ICIP.2007.4379596.
- Weisman M. L., Bow echoes: A tribute to T. T. Fujita, Bull. American Meteorological Soc., 2001, V. 82, No. 1, pp. 97–116, DOI: 10.1175/1520-0477(2001)082<0097:BEATTT>2.3.CO;2.
- Weisman M. L., Mesoscale meteorology. Convective storms: Overview, Encyclopedia of Atmospheric Sciences, New York: Academic Press, 2015, pp. 401–404, DOI: 10.1016/B978-0-12-382225-3.00490-4.
- Wheatley D. M., Trapp R. J., Atkins N. T., Radar and damage analysis of severe bow echoes observed during BAMEX, Monthly Weather Review, 2006, V. 134, No. 3, pp. 791–806, DOI: 10.1175/MWR3100.1.
- Zeng F., Hou J., Automatic detection of bow echoes from weather radar images, 13 th World Congress on Intelligent Control and Automation (WCICA), 2018, pp. 503–508, DOI: 10.1109/WCICA.2018.8630468.
- Ziegler C. L., Lee T. J., Pielke R. A., Sr., Convective initiation at the dryline: A modeling study, Monthly Weather Review, 1997, V. 125, No. 6, pp. 1001–1026, DOI: 10.1175/1520-0493(1997)125<1001:CIATDA>2.0.CO;2.