ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 5, pp. 264-273

Features of formation and interannual variability of Ladoga Lake spring thermal bar in 2016–2022

A.A. Konik 1 , A.V. Zimin 1, 2 , O.A. Atadzhanova 1 , A.V. Isaev 1 
1 Shirshov Institute of Oceanology RAS, Moscow, Russia
2 Saint Petersburg State University, Saint Petersburg, Russia
Accepted: 22.07.2025
DOI: 10.21046/2070-7401-2025-22-5-264-273
The thermal bar is a seasonal thermal frontal zone that forms during the spring and autumn in Lake Ladoga, the largest dimictic lake in Europe. Characterized by strong horizontal temperature gradients, the thermal bar significantly influences the development of stratification, background circulation, and generation of mesoscale eddies. This study aims to assess physical and geographical characteristics and key factors driving the variability of spring thermal bar in Lake Ladoga based on long-term satellite-derived surface temperature data from MODIS (Moderate Resolution Imaging Spectroradiometer) and VIIRS (Visible Infrared Imaging Radiometer Suite) sensors for the period from May to June 2016–2022. Our analysis reveals a systematic southward displacement of the lake’s primary thermal front in June compared to its historical climatological position, alongside a steady increase in the extent of the thermally active zone in recent years. The main drivers of this spatial-temporal variability are winter cooling intensity, intra-seasonal atmospheric temperature anomalies, and the structure of atmospheric circulation patterns, as captured by the Scandinavian index (SCAND). Furthermore, the variability of eddy activity correlates with periods of minimum and maximum thermal bar extent, highlighting a strong link between the timing of stratification onset and lake-wide circulation dynamics.
Keywords: thermal bar, front, eddies, satellite temperature, Aqua, Terra, Suomi NPP, SCAND, Lake Ladoga
Full text

References:

  1. Blokhina N. S., Pokazeev K. V., Unique natural phenomenon — thermobar, Zemlya i Vselennaya, 2015, No. 6, pp. 78–88 (in Russian).
  2. Zimin A. V., Atadzhanova O. A., Blagodatskikh E. A. et al. (2024a), Submesoscale eddy structures of Lake Ladoga according to Sentinel 1 radar data for a warm period of 2019–2022, Doklady Earth Sciences, 2024, V. 514, No. 2, pp. 296–300, https://doi.org/10.1134/S1028334X23602742.
  3. Zimin A. V., Atadzhanova O. A., Konik A. A., Isaev A. V. (2024b), Submesoscale eddies in Lake Ladoga based on Sentinel 1 radar images from January to December 2016–2022, Fundamental and Applied Hydrophysics, 2024, V. 17, No. 4, pp. 43–54 (in Russian), https://doi.org/10.59887/2073-6673.2024.17(4)-3.
  4. Korosov A. A., Pozdnyakov D. V., Filatov N. N. et al., A satellite data-based study of seasonal and spatial variations of some ecoparameters in Lake Ladoga, Issledovanie Zemli iz kosmosa, 2006, No. 5, pp. 76–85 (in Russian).
  5. Kulikov I. V., Yakovleva T. V., Mikhalyuk T. Yu., Areal distribution of the main technogenic components in Lake Ladoga, In: Evolyutsiya prirodnykh obstanovok i sovremennoe sostoyanie geosistemy Ladozhskogo ozera (Evolution of the phenomena of the environment and the current state of the geosystem of Lake Ladoga), N. N. Davydova, B. I. Koshechkin (eds.), Saint Petersburg: Izd. RGO, 1993, pp. 36–48 (in Russian).
  6. Ladozhskoe ozero i dostoprimechatel’nosti ego poberezh’ya: Atlas (Lake Ladoga and the sights of its coast: Atlas), V. A. Rumyantsev (ed.), Saint Petersburg: Nestor-Istoriya, 2015, 200 p. (in Russian).
  7. Mikhailov V. V., Sutyrina E. N., Antonova T. I., Study of the characteristics of the spring thermobar in the largest bays of Lake Baikal according to remote satellite sensing data, Aktual’nye issledovaniya, 2021, No. 31(58), pp. 17–20 (in Russian).
  8. Naumenko M. A., Guzivaty V. V., Karetnikov S. G., Variability of the horizontal gradients of the air and the water surface temperatures in the vernal frontal zone period of Lake Ladoga, Oceanology, 2012, V. 52, No. 6, pp. 735–740, https://doi.org/10.1134/S0001437012060082.
  9. Naumenko M. A., Karetnikov S. G., On the speed of movement of the spring thermal frontal zone in Lake Ladoga, Meteorologiya i gidrologiya, 1998, No. 4, pp. 107–115 (in Russian).
  10. Pishchal’nik V. M., Romanyuk V. A., Minervin I. G., Batukhtina A. S., Analysis of dynamics for anomalies of the ice cover in the Okhotsk Sea in the period from 1882 to 2015, Izvestiya TINRO, 2016, V. 185, pp. 228–239 (in Russian).
  11. Sovremennoe sostoyanie i problemy antropogennoi transformatsii ekosistemy Ladozhskogo ozera v usloviyakh izmenyayushchegosya klimata (Current state and problems of anthropogenic transformation of the ecosystem of Lake Ladoga in the context of changing climate), S. A. Kondrat’ev, Sh. R. Pozdnyakov, V. A. Rumyantsev (eds.), Moscow: Izd. RAN, 2021, 640 p. (in Russian).
  12. Sutyrina E. N., A study of the peculiarities of the lake Hovsgol ice-thermal regime using AVHRR data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, V. 11, No. 1, pp. 190–199 (in Russian).
  13. Tikhomirov A. I., Termika krupnykh ozer (Thermals of large lakes), Leningrad: Nauka, 1982, 232 p. (in Russian).
  14. Filatov N. N., The modern state and perspective investigations of hydrophysical processes and ecosystems of inland waters (a review), Fundamental and Applied Hydrophysics, 2019, V. 12, No. 1, pp. 3–14 (in Russian), https://doi.org/10.7868/S2073667319010015.
  15. Bardin M.Yu., Platove T. V., Samokhina O. F., Extreme heat waves and extreme summer seasons in European Russia, Russian Meteorology and Hydrology, 2024, V. 49, No. 6, pp. 467–481, https://doi.org/10.3103/S1068373924060013.
  16. Groisman P., Shugart H., Kicklighter D. et al., Northern Eurasia Future Initiative (NEFI): facing the challenges and pathways of global change in the twenty-first century, Progress in Earth and Planetary Science, 2017, V. 4, Article 41, 48 p., https://doi.org/10.1186/s40645-017-0154-5.
  17. Hersbach H., Bell B., Berrisford P. et al., ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S), Climate Data Store (CDS), 2023, https://doi.org/10.24381/cds.adbb2d47.
  18. Hyang J. C. K., The thermal bar, Geophysical Fluid Dynamics, 1972, V. 3, pp. 1–25.
  19. Isaev A. V., Ryabchenko V. A., Konik A. A., Reproduction of the current climatic state of the Lake Ladoga ecosystem, Fundamental and Applied Hydrophysics, 2024, V. 17, No. 2, pp. 50–65, https://doi.org/10.59887/2073-6673.2024.17(2)-5.
  20. Lind P., Belušić D., Médus E. et al., Climate change information over Fenno-Scandinavia produced with a convection-permitting climate model, Climate Dynamic, 2023, V. 61, pp. 519–541, https://doi.org/10.1007/s00382-022-06589-3.
  21. Malm J., Grahn L., Mironov D., Terzhevik A., Field investigation of the thermal bar in Lake Ladoga, spring 1991, Hydrology Research, 1993, V. 24, No. 5, pp. 339–358, https://doi.org/10.2166/nh.1993.12.
  22. Malm J., Mironov D., Terzhevik A., Jonsson L., Investigation of the spring thermal regime in Lake Ladoga using field and satellite data, Limnology and Oceanography, 1994, V. 39, No. 6, pp. 1333–1348, https://doi.org/10.4319/lo.1994.39.6.1333.