ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 5, pp. 253-263

Features of radar and radiometric remote sensing of the coastal zone of freshwater lakes in microwave range during the winter period

A.A. Gurulev 1 , V.A. Kazantsev 1 , A.K. Kozlov 1 
1 Institute of Natural Resources, Ecology and Cryology SB RAS, Chita, Russia
Accepted: 08.07.2025
DOI: 10.21046/2070-7401-2025-22-5-253-263
The work presents in situ radiometric studies of freshwater ice cover in the coastal zone of a freshwater water body located in the Trans-Baikal Territory at wavelengths of 0.3, 0.8, and 2.3 cm. Additionally, radar measurements of this research object were conducted at wavelengths of 0.8 and 2.3 cm. It is shown that there are differences in the data obtained by radar and radiometric study methods in application to these environments. Radiometric centimeter range investigation of ice covers thicker than one meter reveals the boundary between ice cover resting on the water surface and the ground. In the millimeter range, due to reflective and emissive properties of snow and ice covers, this boundary is not clearly distinguishable. In the millimeter range, a reduced brightness temperature is observed for snow, which lacks ice grains. This is associated with the granularity of the snow cover, which has characteristic grain sizes of several millimeters. Their presence leads to increased scattering of radiation in this range. For operational monitoring of the coastal zone of freshwater bodies, it is advisable to use UAVs equipped with radiometric and radar systems. This approach, given high spatial resolution, allows for more effective determination of internal features of ice cover located on ground and water surfaces in the coastal zone.
Keywords: microwave range, radar method, microwave radiometry, freshwater ice cover, coastal zone
Full text

References:

  1. Afonina E. Yu., Tashlikova N. A., Tsybekmitova G. Ts., Obyazov V. A., Algae and invertebrates in freshwater ice (Zabaikalsky krai), Earth’s Cryosphere, 2017, V. 21, No. 5, pp. 60–68, DOI: 10.21782/EC1560-7496-2017-5(60-68).
  2. Bordonskiy G. S., Gurulev A. A., Characteristics of thermal radiation of ice covers on water bodies with different mineralization, Water Resources, 2008, V. 35, No. 2, pp. 199–204, DOI: 10.1007/s11268-008-2008-4.
  3. Bordonskiy G. S., Krylov S. D., Migration of salt inclusions in the ice sheets of the lakes of Transbaikalia, Izvestiya Rossiiskoi akademii nauk. Ser. geograficheskaya, 2000, No. 4, pp. 98–102 (in Russian).
  4. Bordonskiy G. S., Zolotareva L. N., Krylov S. D., Estimation of the spatial distribution of higher aquatic vegetation by radiothermal radiation of the ice cover in the microwave range, Issledovanie Zemli iz kosmosa, 1994, No. 3, pp. 96–102 (in Russian).
  5. Bordonskiy G. S., Gurulev A. A., Orlov A. O., Tsyrenzhapov S. V., Difference between radar and radiometric signatures (the case of eutrophic lake ice cover), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, V. 11, No. 2, pp. 228–240 (in Russian).
  6. Bordonskiy G. S., Gurulev A. A., Krylov S. D. et al., Determination of bottom gas liberation zones in fresh ice water areas according to radar and radiometric measurements data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, V. 13, No. 3, pp. 150–161 (in Russian), DOI: 10.21046/2070-7401-2016-13-3-150-161.
  7. Bordonskiy G. S., Gurulev A. A., Kazantsev V. A., Kozlov A. K., Features of the technique of microwave radiometric measurements from a UAV on a 0.8 cm wave, Tekhnika radiosvyazi, 2025, No. 1(64), pp. 102–111 (in Russian).
  8. Venslavsky V. B., Orlov A. O., Kharin Yu. V., Radiothermal radiation of the ice cover of the Arakhley Lake as a geo-indicator of changes in a water body, Vestnik Zabaikal’skogo gosudarstvennogo universiteta, 2020, V. 26, No. 7, pp. 6–16 (in Russian), DOI: 10.21209/2227-9245-2020-26-7-6-16.
  9. Gurulev A. A., Tsyrenzhapov S. V., Orlov A. O., Detection of internal inhomogeneities in a fresh-water ice cover using passive radio location, Russian Physics J., 2014, V. 56, No. 9, pp. 1013–1017, DOI: 10.1007/s11182-014-0133-x.
  10. Gurulev A. A., Orlov A. O., Tsyrenzhapov S. V., Usmanov M. T., Comprehensive search for a dam leak using electromagnetic sensing methods, Melioratsiya i gidrotekhnika, 2025, V. 15, No. 1, pp. 155–172 (in Russian), DOI: 10.31774/2712-9357-2025-15-1-155-172.
  11. Kulikova N. N., Chebykin E. P., Volkova E. A. et al., The elemental composition of algae of the genus Spirogyra as an indicator of pollution of the Baikal near-shore zone with domestic sewage, Geografiya i prirodnye resursy, 2021, V. 42, No. 2, pp. 79–91 (in Russian), DOI: 10.15372/GIPR20210209.
  12. Lavrentiev I. I., Nosenko G. A., Glazovsky A. F. et al., Ice and snow thickness of the IGAN Glacier in the Polar Urals from ground-based radio-echo sounding 2019 and 2021, Ice and Snow, 2023, V. 63, No. 1, pp. 5–16, DOI: 10.31857/S2076673423010106.
  13. Paterson W. S. B., The physics of glaciers, Oxford: Pergamon Press, 1969, 250 p.
  14. Smakhtin V. K., Ice regime of Transbaikalia lakes in the present-day warming, Led i sneg, 2018, V. 58, No. 2, pp. 225–230 (in Russian), DOI: 10.15356/2076-6734-2018-2-225-230.
  15. Tikhonov V. V., Khvostov I. V., Romanov A. N. et al., L-band radiative features of the Ob bay in the freeze-up period, Issledovanie Zemli iz kosmosa, 2020, No. 3, pp. 59–76 (in Russian), DOI: 10.31857/S0205961420030070.
  16. Tikhonov V. V., Khvostov I. V., Romanov A. N., Sharkov E. A., A model of microwave emission from mouth regions of Arctic rivers providing for radiometer pixel land contamination, Izvestiya, Atmospheric and Oceanic Physics, 2024, V. 60, No. 9, pp. 1020–1030, DOI: 10.1134/S0001433824700981.
  17. Topolsky N. G., Simakov V. V., Zerkal A. D., Seregin G. M., Mokshantsev A. V., Ageev S. V., The multifunctional portable radar for ice thickness measuring, Tekhnologii tekhnosfernoi bezopasnosti, 2012, V. 1, No. 41, 5 p. (in Russian), https://uwbs.ru/publikacia-agpss-mchs/.
  18. Alekseeva T., Frolov S., Sokolova J. et al., Comparison of Arctic Sea Ice concentrations from the NASA team, ASI, and VASIA2 algorithms with summer and winter ship data, Remote Sensing, 2019, V. 11, No. 21, Article 2481, DOI: 10.3390/rs11212481.
  19. Valence E., Baraer M., Rosa E. et al., Drone-based ground-penetrating radar (GPR) application to snow hydrology, The Cryosphere, 2022, V. 16, No. 9, pp. 3843–3860, DOI: 10.5194/tc-16-3843-2022.
  20. Vergnano A., Franco D., Godio A., Drone-borne ground-penetrating radar for snow cover mapping, Remote Sensing, 2022, V. 14, No. 7, Article 1763, DOI: 10.3390/rs14071763.