ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 5, pp. 222-233

Assessment and verification of aboveground phytomass using UAV and global datasets: A case study of the southern taiga subzone in Western Siberia

A.O. Eliseev 1 , E.M. Bisirova 1, 2 , I.G. Grachev 1 , I.A. Kerchev 1 
1 Institute of Monitoring of Climatic and Ecological Systems SB RAS, Tomsk, Russia
2 Tomsk Branch of All-Russian Plant Quarantine Center, Tomsk, Russia
Accepted: 27.08.2025
DOI: 10.21046/2070-7401-2025-22-5-222-233
The study presents a comprehensive assessment of aboveground phytomass in forest stands of the southern taiga subzone in Western Siberia (Tomsk Region) by integrating global datasets (GlobBiomass, GEOCARBON, Global Forest Watch (GFW)), field measurements, and aerial photography from a unmanned aerial vehicle (UAV) DJI Phantom 4 Multispectral. An algorithm for extrapolating phytomass using a digital terrain model (DTM) was developed, demonstrating high accuracy (coefficient of determination 0.89) when compared with ground-based data. The study revealed systematic biases in global datasets. The GlobBiomass dataset exhibited the lowest error, with a mean absolute percentage error (MAPE) of 32 %. For the other datasets, errors were significantly higher: GEOCARBON had a MAPE of 43 %, and GFW showed a MAPE of 44 %. These inaccuracies are primarily attributed to coarse spatial resolution and insufficient algorithm adaptation to boreal forests. A key outcome is a high-resolution DTM-based methodology for estimating stand volume, enabling detailed phytomass assessment across a 109-hectare area. The study demonstrates that combining UAV data with local allometric models significantly improves accuracy compared to global maps. The research underscores the importance of validating satellite products and highlights the potential of UAVs for monitoring carbon pools in forest ecosystems.
Keywords: DTM, UAV, GlobBiomass, GEOCARBON, GFW, canopy volume, aboveground phytomass
Full text

References:

  1. Anuchin N. P., Lesnaya taksatsiya: uchebnik dlya vuzov (Forest Inventory: Textbook for universities), 5th ed., Moscow: Lesnaya promyshlennost’, 1982, 352 p. (in Russian).
  2. Gopp N. V., Smirnov V. V., Using the vegetation index (NDVI) to assess aboveground phytomass reserves in tundra plant communities, Interexpo Geo-Sibir, 2009, V. 4, No. 1, pp. 187–191 (in Russian).
  3. Danyulis E. P., Zhirin V. M., Sukhikh V. I., Elman R. I., Distantsionnoe zondirovanie v lesnom khozyaistve: uchebnoe posobie (Remote Sensing in Forestry: Study guide), Moscow: Agropromizdat, 1989, 223 p. (in Russian).
  4. Zamolodchikov D. G., Utkin A. I., Korovin G. N., Conversion coefficients of phytomass/growing stock in relation to dendrometric parameters and stand composition, Lesovedenie, 2005, No. 6, pp. 73–81 (in Russian).
  5. Makarova M. A., Vladimirova N. A., Review of open spatial data resources on Earth’s vegetation cover on the Internet, Botanicheskii zhurnal, 2020, No. 105(4), pp. 387–407 (in Russian), DOI: 10.31857/S0006813620040067.
  6. OST 56-69-83. Probnye ploshchadi lesoustroitel’nye. Metod zakladki (Forest Management Sample Plots. Establishment Method), Moscow: Gosleskhoz SSSR, 1984, 59 p. (in Russian).
  7. Spravochnoe posobie po taksatsii lesov Sibiri (Reference Manual on Forest Inventory in Siberia), E. N. Falaleev (ed.), V. 1, Krasnoyarsk, 1974, 216 p. (in Russian).
  8. Usoltsev V. A., Chasovskikh V. P., Noritsina Yu. V., Noritsin D. V., Allometric models of tree phytomass for laser scanning and ground-based assessment of carbon pool in Eurasian forests, Sibirskii lesnoi zhurnal, 2016, No. 4, pp. 68–76 (in Russian), DOI: 10.15372/SJFS20160407.
  9. Usoltsev V. A., Tsepordei I. S., Noritsin D. V., Allometric models of biomass for forest-forming tree species in the Ural, Lesa Rossii i khozyaistvo v nikh, 2022, No. 1, pp. 4–14 (in Russian), DOI: 10.51318/FRET.2022.85.72.001.
  10. Chmyr A. F., Markova I. A., Senov S. N., Metodologiya lesovodstvennykh issledovanii: uchebnoe posobie (Methodology of Forestry Research: Study guide), Saint Petersburg: LTA, 2000, 96 p. (in Russian).
  11. Shvidenko A. Z., Shchepashchenko D. G., Nilsson S., Bului Yu.I., System of growth models and productivity dynamics of Russian forests (bioproductivity tables and models), Lesnoe khozyaystvo, 2004, No. 2, pp. 40–44 (in Russian).
  12. Shchepashchenko D. G., Shvidenko A. Z., Perger K. et al., Study of forest phytomass: current state and prospects, Sibirskii lesnoi zhurnal, 2017, No. 4, pp. 3–11 (in Russian), DOI: 10.15372/SJFS20170401.
  13. Anuar N. I., Khalid N., Tahar K. N., Othman A. N., Analyze the relationship between aboveground biomass and NDVI values derived from UAV multispectral imagery, IOP Conf. Series: Earth and Environmental Science, 2023, V. 1240, No. 1, Article 012015, DOI: 10.1088/1755-1315/1240/1/012015.
  14. Araza A., de Bruin S., Herold M. et al., A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps, Remote Sensing of Environment, 2022, V. 272, Article 112917, DOI: 10.1016/j.rse.2022.112917.
  15. Avitabile V., Herold M., Heuvelink G., An integrated pan-tropical biomass map using multiple reference datasets, Global Change Biology, 2016, No. 22, pp. 1406–1420, DOI: 10.1111/gcb.13139.
  16. Hese S., Lucht W., Schmullius C. et al., Global biomass mapping for an improved understanding of the CO2 balance — the Earth observation mission carbon-3D, Remote Sensing of Environment, 2005, V. 94, pp. 94–104, DOI: 10.1016/j.rse.2004.09.006.
  17. Houghton R. A., Butman D., Bunn A. G. et al., Mapping Russian forest biomass with data from satellites and forest inventories, Environmental Research Letters, 2007, V. 2, Article 045032, DOI: 10.1088/1748-9326/2/4/045032.
  18. Kumar P., Krishna A. P., Rasmussen T. M., Pal M. K., Rapid evaluation and validation method of above ground forest biomass estimation using optical remote sensing in Tundi reserved forest area, India, ISPRS Intern. J. Geo-Information, 2021, V. 10, Article 29, DOI: 10.3390/ijgi10010029.
  19. Li Y., Li C., Cheng Q. et al., Estimating maize crop height and aboveground biomass using multi-source unmanned aerial vehicle remote sensing and Optuna-optimized ensemble learning algorithms, Remote Sensing, 2024, V. 16, Article 3176, DOI: 10.3390/rs16173176.
  20. Santoro M., GlobBiomass — global datasets of forest biomass, PANGAEA, Data Publisher for Earth and Environmental Science, 2018, DOI: 10.1594/PANGAEA.894711.
  21. Silva C. A., Hudak A. T., Vierling L. A. et al., Imputation of individual longleaf pine (Pinus palustris Mill.) tree attributes from field and LiDAR data, Canadian J. Remote Sensing, 2016, V. 42, No. 5, pp. 554–573, DOI: 10.1080/07038992.2016.1196582.
  22. Zarin D. J., Harris N. L., Baccini A. et al., Can carbon emissions from tropical deforestation drop by 50 % in 5 years?, Global Change Biology, 2016, V. 22, pp. 1336–1347, DOI: 10.1111/gcb.13153.