ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 5, pp. 38-50

Bio-optical algorithms for restoring chlorophyll a concentration in the Volgograd Reservoir using Sentinel-3 OLCI images

S.V. Fedorov 1, 2 , A.A. Molkov 1, 3, 4 , I.A. Kapustin 1, 3, 4 , A.V. Ermoshkin 1, 3 , G.V. Leshev 1, 3 , D.V. Dobrokhotova 1, 3 , E.S. Koltsova 1 , B.V. Konovalov 1, 5 , A.M. Chushnyakova 1, 5 
1 Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
2 Marine Hydrophysical Institute RAS, Sevastopol, Russia
3 Institute of Applied Physics RAS, Nizhny Novgorod, Russia
4 Volga State University of Water Transport, Nizhny Novgorod, Russia
5 Shirshov Institute of Oceanology RAS, Moscow, Russia
Accepted: 29.07.2025
DOI: 10.21046/2070-7401-2025-22-5-38-50
Inland water bodies, including reservoirs, are optically complex environments for which standard satellite algorithms for estimating chlorophyll a concentrations are of little use without adaptation and validation. In this work, a full cycle of analysis is implemented: from field measurements and validation of various algorithms of atmospheric correction to calibration of bio-optical algorithms adapted to the Volgograd Reservoir. In 2024, two expeditions were carried out at this reservoir to collect field data, including measurements of water reflectance, chlorophyll a concentration and atmospheric transparency. Significant spatial and temporal variability of optical properties of waters was found, which was reflected in the spectra of remote sensing reflectance and concentrations of optically active components of water. Validation of atmospheric correction of Sentinel-3 OLCI images showed a fairly high accuracy of satellite remote sensing reflectance. The correlation coefficient was 0.9–1 for most spectral bands. Some deterioration in accuracy was observed in the blue region of the spectrum. The correlation coefficient was approximately 0.7. A comparison of estimates of chlorophyll a concentration according to the NASA OC4 algorithm with measurements of this parameter showed their low accuracy. Two-band red-edge algorithms are proposed for restoring chlorophyll a concentration with a coefficient of determination of 0.7–0.8.
Keywords: Volgograd Reservoir, field measurements, atmospheric correction, Sentinel-3 OLCI, bio-optical algorithms, chlorophyll a concentration
Full text

References:

  1. Konovalov B. V., Kravchishina M. D., Belyaev N. A., Novigatsky A. N., Determination of the concentration of mineral particles and suspended organic substance based on their spectral absorption, Oceanology, 2014, V. 54, No. 5, pp. 660–667, DOI: 10.1134/S0001437014040067.
  2. Mineeva N. M., Semadeny I. V., Makarova O. S., Chlorophyll content and the modern trophic state of the Volga River reservoirs (2017–2018), Inland Water Biology, 2020, V. 13, No. 2, pp. 327–330, DOI: 10.1134/S199508292002008X.
  3. Mineeva N. M., Semadeny I. V., Soloviova V. V., Makarova O. S., Chlorophyll Content and the Modern Trophic State of the Volga River Reservoirs (2019–2020), Inland Water Biology, 2022, No. 4, pp. 367–371, (in Russian), DOI: 10.31857/S0320965222040210.
  4. Smirnova M. V., Cheban E. Yu., Volodchenko E. V., Berdnikova E. Yu., Solina E. S., Hydro-ecological research of the Gorky and Cheboksary reservoirs sites and their tributaries in summer of 2017, Vestnik Volzhskoi Gosudarstvennoi Akademii Vodnogo Transporta, 2017, V. 53, No. 4, pp. 98–108 (in Russian).
  5. Chernogaeva G. M., Zhuravleva L. R., Malevanov Yu. A., Integral assessment of water quality in the Volga River basin according to monitoring data in the 21st century, Izvestiya Rossiiskoi Akademii Nauk. Ser. geograficheskaya, 2023, V. 87, No. 6, pp. 875–884 (in Russian), https://doi.org/10.31857/S2587556623060043.
  6. Binding C. E., Pizzolato L., Zeng C., EOLakeWatch; delivering a comprehensive suite of remote sensing algal bloom indices for enhanced monitoring of Canadian eutrophic lakes, Ecological Indicators, 2021, V. 121, Article 106999, https://doi.org/10.1016/j.ecolind.2020.106999.
  7. Castagna A., Vanhellemont Q., A generalized physics-based correction for adjacency effects, Applied Optics, 2025, V. 64, pp. 2719–2743, https://doi.org/10.1364/AO.546766.
  8. Chen J., Zhu W., Tian Y. Q. et al., Remote estimation of colored dissolved organic matter and chlorophyll-a in Lake Huron using Sentinel-2 measurements, J. Applied Remote Sensing, 2017, V. 11, No. 3, Article 036007, DOI: 10.1117/1.JRS.11.036007.
  9. Doxani G., Vermote E., Roger J.-C. et al., Atmospheric correction inter-comparison exercise, Remote Sensing, 2018, V. 10, No. 2, Article 352, https://doi.org/10.3390/rs10020352.
  10. Hieronymi M., Bi S., Müller D. et al., Ocean color atmospheric correction methods in view of usability for different optical water types, Frontiers in Marine Science, 2023, V. 10, Article 1129876, DOI: 10.3389/fmars.2023.1129876.
  11. Hu C., Lee Z., Franz B., Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference, J. Geophysical Research: Oceans, 2012, V. 117, No. C1, Article C01011, https://doi.org/10.1029/2011JC007395.
  12. Hu C., Feng L., Lee Z. et al., Improving satellite global chlorophyll a data products through algorithm refinement and data recovery, J. Geophysical Research: Oceans, 2019, V. 124, No. 3, pp. 1524–1543, https://doi.org/10.1029/2019JC014941.
  13. Le C., Li Y., Zha Y. et al., A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China, Remote Sensing of Environment, 2009, V. 113, pp. 1175–1182, DOI: 10.1016/j.rse.2009.02.005.
  14. Mobley C. D., Estimation of the remote-sensing reflectance from above-surface measurements, Applied Optics, 1999, V. 38, pp. 7442–7455.
  15. Molkov A., Fedorov S., Pelevin V., Toward atmospheric correction algorithms for Sentinel-3/OLCI images of productive waters, Remote Sensing, 2022, V. 14, No. 15, Article 3663, https://doi.org/10.3390/rs14153663.
  16. Mueller J. L., Pietras C., Hooker S. B., Austin R. W., Miller M., Knobelspiesse K. D., Frouin R., Holben B., Voss K., Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4, V. II: Instrument Specifications, Characterization and Calibration, Greenbelt, MD, USA: NASA’s Goddard Space Flight Center, 2003, 57 p.
  17. Müller D., Krasemann H., Brewin R. J. W. et al., The Ocean Colour Climate Change Initiative: I. A methodology for assessing atmospheric correction processors based on in-situ measurements, Remote Sensing of Environment, 2015, V. 162, pp. 242–256, https://doi.org/10.1016/j.rse.2013.11.026.
  18. O’Reilly J. E., Werdell P. J., Chlorophyll algorithms for ocean color sensors — OC4, OC5 and OC6, Remote Sensing of Environment, 2019, V. 229, pp. 32–47, https://doi.org/10.1016/j.rse.2019.04.021.
  19. Pahlevan N., Mangin A., Balasubramanian S. V. et al., ACIX-aqua: A global assessment of atmospheric correction methods for Landsat-8 and Sentinel-2 over lakes, rivers, and coastal waters, Remote Sensing of Environment, 2021, V. 258, Article 112366, https://doi.org/10.1016/j.rse.2021.112366.
  20. Sakerin S. M., Kabanov D. M., Rostov A. P. et al., Sun photometers for measuring spectral air transparency in stationary and mobile conditions, Atmospheric and Oceanic Optics, 2013, V. 26, No. 4, pp. 352–356, https://doi.org/10.1134/S102485601304012X.
  21. Seegers B. N., Stumpf R. P., Schaeffer B. A. et al., Performance metrics for the assessment of satellite data products: an ocean color case study, Optics Express, 2018, V. 26, No. 6, pp. 7404–7422, DOI: 10.1364/OE.26.007404.
  22. Vanhellemont Q., Sensitivity analysis of the dark spectrum fitting atmospheric correction for metre- and decametre-scale satellite imagery using autonomous hyperspectral radiometry, Optics Express, 2020, V. 28, No. 20, pp. 29948–29965, https://doi.org/10.1364/OE.397456.
  23. Vanhellemont Q., Ruddic K., Atmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter and chlorophyll-a concentration in Belgian turbid coastal waters, Remote Sensing of Environment, 2021, V. 256, Article 112284, https://doi.org/10.1016/j.rse.2021.112284.
  24. Xue K., Ma R., Wang D., Shen M., Optical classification of the remote sensing reflectance and its application in deriving the specific phytoplankton absorption in optically complex lakes, Remote Sensing, 2019, V. 11, No. 2, Article 184, DOI: 10.3390/rs11020184.