ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 5, pp. 322-336

Comparison of satellite products on Arctic sea ice drift

E.V. Zabolotskikh 1 , E.V. Lvova 1 , M.D. Kudel 1 , K.I. Yarusov 1 
1 Russian State Hydrometeorological University, Saint Petersburg, Russia
Accepted: 19.08.2025
DOI: 10.21046/2070-7401-2025-22-5-322-336
Information about sea ice drift fields in the Arctic helps both predict operational sea ice situation and assess climate changes in the Arctic. Therefore, the accuracy of sea ice drift retrieved from satellite measurements needs to be quantitatively estimated. The paper presents the results of comparing three satellite products on sea ice drift in the Arctic: the product of the American National Snow and Ice Data Center (NSIDC), the product of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Ocean and Sea Ice Satellite Application Facilities (OSI SAF), and the product of Ifremer French institute for marine research. A brief overview of the analyzed products and methods of the sea ice drift retrievals is given. The comparison is carried out both for the entire Arctic and for its eight regions: the Central Arctic, the Beaufort Sea, the Chukchi Sea, the East Siberian Sea, the Kara Sea, the Barents Sea, the Laptev Sea, and the Greenland Sea. The comparison is done for spatially averaged and maximum sea ice drift velocities (V) for each region and for the entire Arctic from daily and monthly average data for 2021. The dependence of the differences in sea ice drift fields on the atmospheric water vapor column (WVC) retrieved from the Advanced Microwave Scanning Radiometer 2 (AMSR2) satellite microwave radiometer data is estimated. It is shown that the monthly average V of the NSIDC and OSI SAF products are close to each other, while the Ifremer product V values significantly exceed the first two, especially for the summer months. The difference in sea ice drift velocities of different products increases with increasing WVC. For independent data verification, sea ice drift data from two International Arctic Buoy Program (IABP) drifting buoys are used, from the East Siberian Sea and the Central Arctic. It is shown that only the NSIDC product is accurate enough to be used both for operational analysis of sea ice conditions and for building long-term time series for climate studies, though in the Russian Arctic seas the accuracy of all the products significantly decreases.
Keywords: Arctic, sea ice, sea ice drift, satellite remote sensing
Full text

References:

  1. Demchev D. M., Volkov V. A., Kazakov E. E., Sea ice drift retrieval from SAR using feature tracking, Problemy Arktiki i Antarktiki, 2016, V. 109, No. 3, pp. 5–19 (in Russian).
  2. Agnew T. A., Le H., Hirose T., Estimation of large-scale sea-ice motion from SSM/I 85.5 GHz imagery, Annals of Glaciology, 1997, V. 25, pp. 305–311, DOI: 10.3189/S0260305500014191.
  3. Comiso J. C., Meier W. N., Gersten R., Variability and trends in the Arctic Sea ice cover: Results from different techniques, J. Geophysical Research: Oceans, 2017, V. 122, No. 8, pp. 6883–6900, DOI: 10.1002/2017JC012768.
  4. Fang H., Zhang X., Shi L. et al., Evaluation of Arctic sea ice drift products based on FY-3, HY-2, AMSR2, and SSMIS radiometer data, Remote Sensing, 2022, V. 14, No. 20, Article 5161, DOI: 10.3390/rs14205161.
  5. Fowler C. W., Polar Pathfinder Daily 25 km EASE‐Grid Sea Ice Motion Vectors, Boulder, Colorado: National Snow and Ice Data Center, 2003, 19 p.
  6. Girard-Ardhuin F., Ezraty R., Enhanced Arctic sea ice drift estimation merging radiometer and scatterometer data, IEEE Trans. Geoscience and Remote Sensing, 2012, V. 50, No. 7, pp. 2639–2648, DOI: 10.1109/TGRS.2012.2184124.
  7. Girard-Ardhuin F., Ezraty R., Croizé-Fillon D., Piolle J., Sea ice drift in the central Arctic combining QuikSCAT and SSM/I sea ice drift data. User’s Manual, Version 3.0, Brest, France: Ifremer, 2008, 31 p.
  8. Haarpaintner J., Arctic-wide operational sea ice drift from enhanced-resolution QuikScat/SeaWinds scatterometry and its validation, IEEE Trans. Geoscience and Remote Sensing, 2006, V. 44, No. 1, pp. 102–107, DOI: 10.1109/TGRS.2005.859352.
  9. Hollands T., Linow S., Dierking W., Reliability measures for sea ice motion retrieval from synthetic aperture radar images, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2014, V. 8, No. 1, pp. 67–75, DOI: 10.1109/JSTARS.2014.2340572.
  10. Komarov A. S., Barber D. G., Sea ice motion tracking from sequential dual-polarization RADARSAT-2 images, IEEE Trans. Geoscience and Remote Sensing, 2014, V. 52, No. 1, pp. 121–136, DOI: 10.1109/TGRS.2012.2236845.
  11. Kwok R., Schweiger A., Rothrock D. A. et al., Sea ice motion from satellite passive microwave imagery assessed with ERS SAR and buoy motions, J. Geophysical Research: Oceans, 1998, V. 103, No. C4, pp. 8191–8214, DOI: 10.1029/97JC03334.
  12. Kwok R., Curlander J. C., McConnell R., Pang S. S., An ice-motion tracking system at the Alaska SAR facility, IEEE J. Oceanic Engineering, 2002, V. 15, No. 1, pp. 44–54, DOI: 10.1109/48.46835.
  13. Kwok R., Spreen G., Pang S., Arctic sea ice circulation and drift speed: Decadal trends and ocean currents, J. Geophysical Research: Oceans, 2013, V. 118, No. 5, pp. 2408–2425, DOI: 10.1002/jgrc.20191.
  14. Lavergne T., Algorithm Theoretical Basis Document for the OSI SAF Low Resolution Sea Ice Drift Product. Version 1.3, Ocean and Sea Ice SAF, 2016, 31 p.
  15. Lavergne T., Down E., A climate data record of year-round global sea ice drift from the EUMETSAT OSI SAF, Earth System Science Data, 2023, V. 15, No. 12, pp. 5807–5834, DOI: 10.5194/essd-15-5807-2023.
  16. Lavergne T., Eastwood S., Teffah Z. et al., Sea ice motion from low-resolution satellite sensors: An alternative method and its validation in the Arctic, J. Geophysical Research: Oceans, 2010, V. 115, No. C10, Article C10032, DOI: 10.1029/2009JC005958.
  17. Lavergne T., Solé M. P., Down E., Donlon C., Towards a swath-to-swath sea-ice drift product for the Copernicus Imaging Microwave Radiometer mission, The Cryosphere, 2021, V. 15, No. 8, pp. 3681–3698, DOI: 10.5194/tc-15-3681-2021.
  18. Moore G. W. K., Howell S. E. L., Brady M. et al., Anomalous collapses of Nares Strait ice arches leads to enhanced export of Arctic sea ice, Nature Communications, 2021, V. 12, Article 1, DOI: 10.1038/s41467-020-20314-w.
  19. Ninnis R. M., Emery W. J., Collins M. J., Automated extraction of pack ice motion from advanced very high resolution radiometer imagery, J. Geophysical Research: Oceans, 1986, V. 91, No. C9, pp. 10725–10734, DOI: 10.1029/JC091iC09p10725.
  20. Petty A. A., Kurtz N. T., Kwok R. et al., Winter Arctic sea ice thickness from ICESat-2 freeboards, J. Geophysical Research: Oceans, 2020, V. 125, No. 5, Article e2019JC015764, DOI: 10.1029/2019JC015764.
  21. Shi Q., Yang Q., Su J. et al., Improved Arctic sea-ice motion in summer from the brightness temperature of the AMSR2 36GHz channel, Intern. J. Digital Earth, 2024, V. 17, No. 1, Article 2311317, DOI: 10.1080/17538947.2024.2311317.
  22. Spreen G., Kwok R., Menemenlis D., Trends in Arctic sea ice drift and role of wind forcing: 1992–2009, Geophysical Research Letters, 2011, V. 38, No. 19, Article L19501, DOI: 10.1029/2011GL048970.
  23. Sumata H., Lavergne T., Girard-Ardhuin F. et al., An intercomparison of Arctic ice drift products to deduce uncertainty estimates, J. Geophysical Research: Oceans, 2014, V. 119, No. 8, pp. 4887–4921, DOI: 10.1002/2013JC009724.
  24. Thorndike A. S., Colony R., Sea ice motion in response to geostrophic winds, J. Geophysical Research: Oceans, 1982, V. 87, No. C8, pp. 5845–5852, DOI: 10.1029/JC087iC08p05845.
  25. Tschudi M. A., Meier W. N., Stewart J. S., An enhancement to sea ice motion and age products at the National Snow and Ice Data Center (NSIDC), The Cryosphere, 2020, V. 14, No. 5, pp. 1519–1536, DOI: 10.5194/tc-14-1519-2020.
  26. Ye Y., Luo Y., Sun Y. et al., Inter-comparison and evaluation of Arctic sea ice type products, The Cryosphere, 2023, V. 17, No. 1, pp. 279–308, DOI: 10.5194/tc-17-279-2023.
  27. Zabolotskikh E. V., Khvorostovsky K. S., Chapron B., An advanced algorithm to retrieve total atmospheric water vapor content from the Advanced Microwave Scanning Radiometer data over sea ice and sea water surfaces in the Arctic, IEEE Trans. Geoscience and Remote Sensing, 2020, V. 58, No. 5, pp. 3123–3135, DOI: 10.1109/TGRS.2019.2948289.
  28. Zhao Y., Liu A. K., Long D. G., Validation of sea ice motion from QuikSCAT with those from SSM/I and buoy, IEEE Trans. Geoscience and Remote Sensing, 2002, V. 40, No. 6, pp. 1241–1246, DOI: 10.1109/TGRS.2002.800442.