Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 5, pp. 178-194
Spatial accuracy analysis of satellite-derived burned area products for the territory of Russia
A.M. Matveev
1 , S.A. Bartalev
1 1 Space Research Institute RAS, Moscow, Russia
Accepted: 07.08.2025
DOI: 10.21046/2070-7401-2025-22-5-178-194
The paper characterizes the sources of errors impacting the spatial accuracy of SRBA (Surface Reflectance Burnt Area), a national product developed at Space Research Institute RAS, Copernicus CGLS Burned Area 300m 3.1 NTC (CGLS BA 3.1), ESA FireCCI51 and FireCCIS311, NASA MCD64A1 C6 and VNP64A1 C2 global remote sensing burned area products for the territory of Russia. The assessment revealed that unaccounted unburned islands have produced an overestimation of burned area by 10 % in the reference sample used in this study. For the remote sensing products examined, we have observed an increase in area assessment accuracy with the growing size of burn scars, except for the mapping of grassland burns according to MCD64A1 C6, VNP64A1 C2, and SRBA data. In the case of most reviewed products and land cover types, the area of omission or commission more frequently relates to correctly mapped burn scars rather than completely omitted or artificially delineated burns. Depending on the reviewed product, the mixed pixels, which contain both burned and unscorched areas, according to the reference sample data account for 7–10 % of omission and 15–40 % commission errors. Among other products, SRBA and CGLS BA 3.1 demonstrate a higher rate of agreement and commission when compared with the reference sample. A high percentage of both partially and fully omitted burned areas is characteristic of the NASA products. The Pareto Boundary analysis has indicated a high accuracy in mapping forest fires for all the reviewed products, meaning a substantial impact of spatial resolution on the resulting area assessment accuracy. The accuracy of grassland burned area mapping is significantly lower and is less dependent on spatial resolution.
Keywords: remote sensing, burned area, burned area accuracy assessment, validation
Full textReferences:
- Bartalev S. A., Belyaev A. I., Egorov V. A., Ershov D. V., Korovin G. N., Korshunov N. A., Kotelnikov R. D., Loupian E. A., Validation of forest burnt area detection and area estimates derived from satellite remote sensing data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2005, Iss. 2, V. 2, pp. 343–353 (in Russian).
- Bartalev S. A., Egorov V. A., Efremov V. Yu., Loupian E. A., Stytsenko F. V., Flitman E. V., Integrated burnt area assessment based on combine use of multi-resolution MODIS and Landsat-TM/ETM+ satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, V. 9, No. 2, pp. 9–26 (in Russian).
- Bartalev S. A., Loupian E. A., Stytsenko F. V., Panova O. Y., Efremov V. Yu., Rapid mapping of forest burnt areas over Russia using Landsat data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, V. 11, No. 1, pp. 9–20 (in Russian).
- Bartalev S. A., Egorov V. A., Zharko V. O., Loupian E. A., Plotnikov D. E., Khvostikov S. A., Shabanov N. V., Sputnikovoe kartografirovanie rastitel’nogo pokrova Rossii (Land cover mapping over Russia using Earth observation data), Moscow: IKI RAN, 2016, 208 p. (in Russian).
- Loupian E. A., Stytsenko F. V., Senko K. S. et al., Burnt area assessment using MODIS Collection 6 active fire data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, V. 18, No. 4, pp. 178–192 (in Russian), DOI: 10.21046/2070-7401-2021-18-4-178-192.
- Matveev A. M., Bartalev S. A., Egorov V. A. et al., Validation of national and global satellite-derived burned area products in Russia, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 3, pp. 9–30 (in Russian), DOI: 10.21046/2070-7401-2025-22-3-9-30.
- Stytsenko F. V., Bartalev S. A., Ivanonva A. A. et al., Forest burnt area assessment possibilities in regions of Russia based on active fires detection by satellites, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, V. 13, No. 6, pp. 289–298 (in Russian), DOI: 10.21046/2070-7401-2016-13-6-289-298.
- Anaya J. A., Chuvieco E., Accuracy assessment of burned area products in the Orinoco basin, Photogrammetric Engineering and Remote Sensing, 2012, V. 78., No. 1., pp. 53–60, DOI: 10.14358/PERS.78.1.53.
- Bastarrika A., Rodriguez-Montellano A., Roteta E. et al., An automatic procedure for mapping burned areas globally using Sentinel-2 and VIIRS/MODIS active fires in Google Earth Engine, ISPRS J. Photogrammetry and Remote Sensing, 2024, V. 218, Pt. A, pp. 232–245, DOI: 10.1016/j.isprsjprs.2024.08.019.
- Boschetti L., Flasse S. P., Brivio P. A., Analysis of the conflict between omission and commission in low spatial resolution dichotomic thematic products: The Pareto Boundary, Remote Sensing of Environment, 2004, V. 91, Iss. 3–4, pp. 280–292, DOI: 10.1016/j.rse.2004.02.015.
- Boschetti L., Roy D. P., Justice C. O., International Global Burned Area Satellite Product Validation Protocol. Part I — Production and standardization of validation reference data, Maryland, USA: Committee on Earth Observation Satellites, 2010, 11 p.
- Boschetti L., Roy D. P., Giglio L. et al., Global validation of the collection 6 MODIS burned area product, Remote Sensing of Environment, 2019, V. 235, Article 111490, DOI: 10.1016/j.rse.2019.111490.
- Campagnolo M. L., Libonati R., Rodrigues J. A., Pereira J. M. C., A comprehensive characterization of MODIS daily burned area mapping accuracy across fire sizes in tropical savannas, Remote Sensing of Environment, 2021, V. 252, Article 112115, DOI: 10.1016/j.rse.2020.112115.
- Chuvieco E., Roteta E., Sali M. et al., Building a small fire database for Sub-Saharan Africa from Sentinel-2 high-resolution images, Science of the Total Environment, 2022, V. 845, Article 157139, DOI: 10.1016/j.scitotenv.2022.157139.
- Eidenshink J., Schwind B., Brewer K. et al., A project for monitoring trends in burn severity, Fire Ecology, 2007, V. 3, pp. 3–21, DOI: 10.4996/fireecology.0301003.
- Franquesa M., Lizundia-Loiola J., Stehman S. V., Chuvieco E. (2022a), Using long temporal reference units to assess the spatial accuracy of global satellite-derived burned area products, Remote Sensing of Environment, 2022, V. 269, Article 112823, DOI: 10.1016/j.rse.2021.112823.
- Franquesa M., Stehman S. V., Chuvieco E. (2022b), Assessment and characterization of sources of error impacting the accuracy of global burned area products, Remote Sensing of Environment, 2022, V. 280, Article 113214, DOI: 10.1016/j.rse.2022.113214.
- Fraser R. H., Hall R. J., Landry R. et al., Validation and calibration of Canada-wide coarse-resolution satellite burned-area maps, Photogrammetric Engineering and Remote Sensing, 2004, V. 70, No. 4, pp. 451–460, DOI: 10.14358/PERS.70.4.451.
- Giglio L., Boschetti L., Roy D. P. et al., The Collection 6 MODIS burned area mapping algorithm and product, Remote Sensing of Environment, 2018, V. 217, pp. 72–85, DOI: 10.1016/j.rse.2018.08.005.
- Giglio L., Boschetti L., Roy D. P. et al., The NASA VIIRS burned area product, global validation, and intercomparison with the NASA MODIS burned area product, Remote Sensing of Environment, 2025, V. 331, Article 115006, DOI: 10.1016/j.rse.2025.115006.
- Glushkov I., Zhuravleva I., McCarty J. L. et al., Spring fires in Russia: results from participatory burned area mapping with Sentinel-2 imagery, Environmental Research Letters, 2021, V. 16, Iss. 12, Article 125005, DOI: 10.1088/1748-9326/ac3287.
- Hawbaker T. J., Vanderhoof M. K., Schmidt G. L. et al., The Landsat Burned Area algorithm and products for the conterminous United States, Remote Sensing of Environment, 2020, V. 244, Article 111801, DOI: 10.1016/j.rse.2020.111801.
- Humber M. L., Boschetti L., Giglio L., Assessing the shape accuracy of coarse resolution burned area identifications, IEEE Trans. Geoscience and Remote Sensing, 2020, V. 58, No. 3, pp. 1516–1526, DOI: 10.1109/TGRS.2019.2943901.
- Justice C., Belward A., Morisette J. et al., Developments in the “validation” of satellite sensor products for the study of the land surface, Intern. J. Remote Sensing, 2000, V. 21, Iss. 17, pp. 3383–3390, DOI: 10.1080/014311600750020000.
- Kolden C. A., Lutz J. A., Key C. H. et al., Mapped versus actual burned area within wildfire perimeters: Characterizing the unburned, Forest Ecology and Management, 2012, V. 286, pp. 38–47, DOI: 10.1016/j.foreco.2012.08.020.
- Kurbanov E., Vorobev O., Lezhnin S. et al., Temporal and spatial analyses of forest burnt area in the Middle Volga region based on satellite imagery and climatic factors, Climate, 2024, V. 12, Iss. 3, Article 45, DOI: 10.3390/cli12030045.
- Liu P., Liu Y., Guo X. et al., Burned area detection and mapping using time series Sentinel-2 multispectral images, Remote Sensing of Environment, 2023, V. 296, Article 113753, DOI: 10.1016/j.rse.2023.113753.
- Lizundia-Loiola J., Otón G., Ramo R., Chuvieco E., A spatio-temporal active-fire clustering approach for global burned area mapping at 250 m from MODIS data, Remote Sensing of Environment, 2020, V. 236, Article 111493, DOI: 10.1016/j.rse.2019.111493.
- Lizundia-Loiola J., Franquesa M., Khairoun A., Chuvieco E., Global burned area mapping from Sentinel-3 Synergy and VIIRS active fires, Remote Sensing of Environment, 2022, V. 282, Article 113298, DOI: 10.1016/j.rse.2022.113298.
- Lutes D. C., Keane R. E., Caratti J. F., Key C. H., Benson N. C., Sutherland S., Gangi L. J., FIREMON: Fire Effects Monitoring and Inventory System, General Technical Report RMRS-GTR-164-CD, V. 1, Fort Collins, CO, USA: U. S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2006, 400 p.
- Miller J. D., Thode A. E., Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR), Remote Sensing of Environment, 2007, V. 109, Iss. 1, pp. 66–80, DOI: 10.1016/j.rse.2006.12.006.
- Nogueira J. M. P., Ruffault J., Chuvieco E., Mouillot F., Can we go beyond burned area in the assessment of global remote sensing products with fire patch metrics?, Remote Sensing, 2017, V. 9, Article 7, DOI: 10.3390/rs9010007.
- Oliva P., Martín P., Chuvieco E., Burned area mapping with MERIS postfire image, Intern. J. Remote Sensing, 2011, V. 32, Iss. 15, pp. 4175–4201, DOI: 10.1080/01431161.2010.489062.
- Ouattara B., Thiel M., Sponholz B. et al., Enhancing burned area monitoring with VIIRS dataset: A case study in Sub-Saharan Africa, Science of Remote Sensing, 2024, V. 10, Article 100165, DOI: 10.1016/j.srs.2024.100165.
- Padilla M., Ramo R., Copernicus Global Land operations. “Vegetation and Energy”. “CGLOPS-1”. Burned Area Collection 300M, version 3.1. Quality assessment report, Iss. I1.10, Copernicus, 2024, 61 p.
- Padilla M., Ramo R., Gomez-Dans J. L. et al., Near-real time monitoring of burned area at global scale based on deep learning, Intern. J. Remote Sensing, 2025, V. 46, No. 16, pp. 5996–6038, DOI: 10.1080/01431161.2025.2528256.
- Pickens A. H., Hansen M. C., Hancher M. et al., Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series, Remote Sensing of Environment, 2020, V. 243, Article 111792, DOI: 10.1016/j.rse.2020.111792.
- Sparks A. M., Boschetti L., Smith A. M. S. et al., An accuracy assessment of the MTBS burned area product for shrub–steppe fires in the northern Great Basin, United States, Intern. J. Wildland Fire, 2015, V. 24, pp. 70–78, DOI: 10.1071/WF14131.
- The 2022 GCOS ECVs Requirements, Geneva, Switzerland: World Meteorological Organization (WMO), 2022, 261 p., https://oceanrep.geomar.de/id/eprint/57694/1/GCOS-245_2022_GCOS_ECVs_Requirements.pdf.
- Zhu C., Kobayashi H., Kanaya Y., Saito M., Size-dependent validation of MODIS MCD64A1 burned area over six vegetation types in boreal Eurasia: Large underestimation in croplands, Nature Scientific Reports, 2017, V. 7, Iss. 1, Article 4181, DOI: 10.1038/s41598-017-03739-0.