ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 4, pp. 27-39

Mineral dust impact on atmospheric correction of OLCI satellite optical radiometer measurements over the Sea of Japan

A.S. Papkova 1 , P.A. Salyuk 2 , D.M. Shukalo 1 
1 Marine Hydrophysical Institute RAS, Sevastopol, Russia
2 Pacific Geographical Institute FEB RAS, Vladivostok, Russia
Accepted: 26.05.2025
DOI: 10.21046/2070-7401-2025-22-4-27-39
The study presents an analysis of variability of optical properties of the atmosphere and hydrooptical characteristics of the mineral dust transfer episode over the Sea of Japan in the period of April 13–21, 2023, according to satellite and in situ data. During statistical processing of OLCI (Ocean and Land Colour Instrument) satellite data for the central and northeastern part of the Sea of Japan, it was found that on the days of the dust storm, the chlorophyll a (Chl-a) concentration increased sharply (3–4 times) to 4.47–5.23 mg•m-3, which was an obvious consequence of atmospheric correction error, since even if mineral dust does induce an increase in Chl-a concentration, this effect cannot occur instantly. Further, when analyzing the statistical distribution of remote sensing reflectance for the dates under study, negative or anomaly low values were found in the short-wave region of the spectrum. In an additional analysis of the results of atmospheric correction on the studied dates, it was found that the course of the power function of the atmospheric correction error compared to the nearest clear day is well described by a function of the form l-5.5, which in future can be used as a basis for a new regional algorithm of atmospheric correction.
Keywords: mineral dust, Sea of Japan, Chl-a concentration, atmospheric correction, sea spectral radiance coefficient, OLCI, AERONET
Full text

References:

  1. Aleksanin A. I., Kachur V. A., Specificity of atmospheric correction of satellite data on ocean color in the Far East, Issledovanie Zemli iz kosmosa, 2016, V. 3, No. 6, pp. 56–67 (in Russian), DOI: 10.7868/S020596141605002X.
  2. Bukin O. A., Pavlov A. N., Saluk P. A., Kulchin Y. N., Shmirko K. A., Stolyarchuk S. Y., Bubnovskii A. Y., Peculiarities of the aerosol vertical distribution during the passage of dust storms over the Peter the Great Bay in 2006 and their influence on phytoplankton communities in the Japan Sea, Atmospheric and Oceanic Optics, 2007, V. 20, No. 4, pp. 306–312.
  3. Zvalinsky V. I., Lobanova P. V., Tishchenko P. Ya. et al., Estimation of primary production in the northern part of the Sea of Japan in various seasons by ship- and satellite-based observations, Oceanology, 2022, V. 62, No. 5, pp. 630–645, DOI: 10.1134/S0001437022050216.
  4. Navrotsky V. V., Dubina V. A., Pavlova E. P., Chrapchenkov F. F., Analysis of satellite observations of chlorophyll concentration in the Peter the Great Gulf (Japan Sea), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, V. 16, No. 1, pp. 158–170 (in Russian), DOI: 10.21046/2070-7401-2019-16-1-158-170.
  5. Shybanov E. B., Papkova A. S., Differences in the Ocean Color atmospheric correction algorithms for remote sensing reflectance retrievals for different atmospheric conditions, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, V. 19, No. 6, pp. 9–17 (in Russian), DOI: 10.21046/2070-7401-2022-19-6-9-17.
  6. Shtraikhert E. A., Zakharkov S. P., Gordeychuk T. N., Shambarova Ju. V., Chlorophyll-a concentration and bio-optical characteristics in the Peter the Great Bay (Sea of Japan) during winter-spring phytoplankton bloom, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, V. 11, No. 1, pp. 148–162 (in Russian).
  7. Cui T., Zhang J., Tang J. et al., Assessment of satellite ocean color products of MERIS, MODIS and SeaWiFS along the East China Coast (in the Yellow Sea and East China Sea), ISPRS J. Photogrammetry and Remote Sensing, 2014, V. 87, pp. 137–151, DOI: 10.1016/j.isprsjprs.2013.10.013.
  8. DeSouza-Machado S., Strow L., Imbiriba B. et al., Infrared retrievals of dust using AIRS: Comparisons of optical depths and heights derived for a North African dust storm to other collocated EOS A-Train and surface observations, J. Geophysical Research: Atmospheres, 2010, V. 115, No. D15, Article D15201, DOI: 10.1029/2009JD012842.
  9. Eck T. F., Holben B. N., Reid J. S. et al., Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols, J. Geophysical Research: Atmospheres, 1999, V. 104, No. D24, pp. 31333–31349, DOI: 10.1029/1999JD900923.
  10. Filonchyk M., Peterson M. P., Zhang L., Yan H., An analysis of air pollution associated with the 2023 sand and dust storms over China: Aerosol properties and PM10 variability, Geoscience Frontiers, 2024, V. 15, No. 2, Article 101762, DOI: 10.1016/j.gsf.2023.101762.
  11. Fukushima H., Toratani M., Asian dust aerosol: Optical effect on satellite ocean color signal and a scheme of its correction, J. Geophysical Research: Atmospheres, 1997, V. 102, No. D14, pp. 17119–17130, DOI: 10.1029/96JD03747.
  12. Gordon H. R., Wang W., Influence of oceanic whitecaps on atmospheric correction of ocean-color sensors, Applied Optics, 1994, V. 33, pp. 7754–7763, DOI: 10.1364/AO.33.007754.
  13. Hu C., Lee Z., Franz B., Chlorophyll-a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference, J. Geophysical Research: Oceans, 2012, V. 117, No. C1, Article C01011, DOI: 10.1029/2011JC007395.
  14. Kalinskaya D. V., Papkova A. S., Why is it important to consider dust aerosol in the Sevastopol and Black Sea region during remote sensing tasks? A Case Study, Remote Sensing, 2022, V. 14, No. 8, Article 1890, DOI: 10.3390/rs14081890.
  15. Li Y., Wang W., Long-range transport of a dust event and impact on marine chlorophyll-a concentration in April 2023, Remote Sensing, 2024, V. 16, No. 11, Article 1883, DOI: 10.3390/rs16111883.
  16. Li J., Wong M. S., Shi G., Multi-faceted analysis of dust storm from satellite imagery, ground station, and model simulations, a study in China, Atmospheric Research, 2024, No. 299, Article 107195, DOI: 10.1016/j.atmosres.2023.107195.
  17. Lipinskaya N. A., Salyuk P. A., Golik I. A., Variations and depth of formation of submesoscale eddy structures in satellite ocean color data in the southwestern region of the Peter the Great Bay, Remote Sensing, 2023, V. 15, No. 23, Article 5600, DOI: 10.3390/rs15235600.
  18. Ocean and Land Colour Imager (OLCI) Ocean Color Data; 2022 Reprocessing, NASA OB.DAAC, Greenbelt, MD, USA: NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group, 2022, DOI: 10.5067/SENTINEL-3A/OLCI/L2/EFR/OC/2022.
  19. Papkova A. S., Shybanov E. B., Kalinskaya D. V., The effect of dust aerosol on satellite data from different color scanners, Physical Oceanography, 2024, V. 31, No. 5, pp. 720–735.
  20. Park M.-S., Lee S., Ahn J.-H. et al., Decadal measurements of the first geostationary ocean color satellite (GOCI) compared with MODIS and VIIRS data, Remote Sensing, 2022, V. 14, No. 1, DOI: 10.3390/rs14010072.
  21. Salyuk P., Bukin O., Alexanin A. et al., Optical properties of peter the great bay waters compared with satellite ocean colour data, Intern. J. Remote Sensing, 2010, V. 31, No. 17, DOI: 10.1080/01431161.2010.485219.
  22. Salyuk P. A., Stepochkin I. E., Shmirko K. A., Golik I. A., Using satellite multi-angle polarization measurements to characterize atmospheric aerosol above Bohai Bay, Advances in Space Research, 2024, V. 73, No. 1, pp. 514–522, DOI: 10.1016/j.asr.2023.10.007.
  23. Shanmugam P., Ahn Y.-H., New atmospheric correction technique to retrieve the ocean colour from SeaWiFS imagery in complex coastal waters, J. Optics A: Pure and Applied Optics, 2007, V. 9, No. 5, pp. 511–530, DOI: 10.1088/1464-4258/9/5/016.
  24. Shybanov E. B., Papkova A. S., Algorithm for additional correction of remote sensing reflectance in the presence of absorbing aerosol: Case study, Physical Oceanography, 2022, V. 29, No. 6, pp. 688–706, DOI: 10.22449/1573-160X-2022-6-688-706.
  25. Song H., Zhang K., Piao S., Wan S., Spatial and temporal variations of spring dust emissions in northern China over the last 30 years, Atmospheric Environment, 2016, V. 126, pp. 117–127, DOI: 10.1016/j.atmosenv.2015.11.052.
  26. Suetin V. S., Korolev S. N., Suslin V. V., Kucheryavyi A. A., Manifestation of specific features of the optical properties of atmospheric aerosol over the Black Sea in the interpretation of SeaWiFS data, Physical Oceanography, 2004, V. 14, pp. 57–65, https://doi.org/10.1023/B:POCE.0000025370.99460.88.
  27. Wang H., Zhao T., Zhang X., Gong S., Dust direct radiative effects on the earth-atmosphere system over East Asia: Early spring cooling and late spring warming, Chinese Science Bull., 2011, V. 56, No. 10, pp. 1020–1030, DOI: 10.1007/s11434-011-4405-3.
  28. Yu H., Yang Y., Wang H. et al., Interannual variability and trends of combustion aerosol and dust in major continental outflows revealed by MODIS retrievals and CAM5 simulations during 2003–2017, Atmospheric Chemistry Physics, 2020, V. 20, pp. 139–161, DOI: 10.5194/acp-20-139-2020.
  29. Zhang X., Zhou Y., Aerosol direct radiative forcing over China: A 40-year MERRA-2-based evaluation, Atmospheric Environment, 2023, V. 299, Article 119659, DOI: 10.1016/j.atmosenv.2023.119659.