ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 4, pp. 236-252

Satellite-based mapping of forest vulnerability to wind impact (by an example of Perm Krai)

A.V. Semakina 1 , A.N. Shikhov 1 , E.A. Klimina 1 
1 Perm State University, Perm, Russia
Accepted: 20.05.2025
DOI: 10.21046/2070-7401-2025-22-4-236-252
Windthrow is the most significant type of natural disturbance for dark-coniferous and mixed forests covering vast areas in the European part of Russia, and Perm Krai in particular. Its risk assessment involves determination of the hazard, exposure and vulnerability and has not been previously performed for large regions of Russia. In this study, a training sample of over 102,000 features was compiled using freely available satellite data, their processing products and digital elevation models. The Random Forest Regressor model was trained on its basis to assess the vulnerability of forests to wind impact. The predictors were 16 characteristics of forest cover (dominant tree species, age, growing stock, stand height) and topography. The highest importance and strongest correlation with the dependent variable had growing stock, according to the GlobBiomass dataset, mean height of trees, and the proportion of pine and dark coniferous forests area. The Random Forest model was used to calculate the vulnerability of forests Perm Krai to wind impact and to compile the corresponding map. It was shown that the model does not allow correct estimation of spatial distribution of forest damage at the local level (for an individual windthrow), as it disregards the local distribution of wind speed. However, for the entire territory of Perm Krai, the obtained estimate agrees well with the observed spatial distribution of windthrow events occurred over the past 40 years. The model can also be used to predict forest vulnerability to wind impact for other regions with similar forest characteristics, primarily in the forest zone of the European part of Russia.
Keywords: windthrow, vulnerability, exposure, risk, predictors, forest stand characteristics, mapping, machine learning, Random Forest
Full text

References:

  1. Bartalev S. A., Egorov V. A., Zharko V. O., Loupian E. A., Plotnikov D. E., Khvostikov S. A., Shabanov N. V., Sputnikovoe kartografirovanie rastitel’nogo pokrova Rossii (Land cover mapping over Russia using Earth observation data), Moscow: IKI RAS, 2016, 208 p. (in Russian).
  2. Kurbanov E. A., Vorob’ev O. N., Lezhnni S. A., Gubaev A. V., Polevshchikova Yu. A., Tematicheskoe kartirovanie rastitel’nogo pokrova po sputnikovym snimkam: validatsiya i otsenka tochnosti (Thematic mapping of vegetation cover using satellite images: validation and accuracy assessment), Ioshkar-Ola: Volga State University of Technology, 2015, 132 p. (in Russian).
  3. Petukhov I. N., Rol’ massovykh vetrovalov v formirovanii lesnogo pokrova v podzone yuzhnoi taigi (Kostromskaya oblast’): Diss. kand. biol. nauk (The role of massive windthrows in the forest cover formation in the southern taiga subzone (Kostroma region), Cand. biol. sci. thesis), Kostroma, 2016, 150 p. (in Russian).
  4. Skvortsova E. B., Ulanova N. G., Basevich V. F., Ehkologicheskaya rol’ vetrovalov (Ecological role of windthrow), Moscow: Lesnaya promyshlennost’, 1983, 192 p. (in Russian).
  5. Shikhov A. N., Dremin D. A., Patterns of wind-induced forest damage in the European Russia and Ural: analysis with satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, V. 18, No. 3, pp. 153–168 (in Russian), DOI: 10.21046/2070-7401-2021-18-3-153-168.
  6. Shikhov A. N., Semakina A. V., Mapping of vegetation cover of Perm Krai using Landsat satellite images, Geograficheskii vestnik, 2022, No. 1, pp. 150–164 (in Russian), DOI: 10.17072/2079-7877-2022-1-150-164.
  7. Shikhov A. N., Chernokul’skii A. V., Kalinin N. A., P’yankov S. V., Vetrovaly v lesnoi zone Rossii i usloviya ikh vozniknoveniya (Windthrow in the forest zone of Russia and conditions of their occurrence), Perm’: Perm State University, 2023, 284 p. (in Russian).
  8. Albrecht A. T., Jung C., Schindler D., Improving empirical storm damage models by coupling with high-resolution gust speed data, Agricultural and Forest Meteorology, 2019, V. 268, pp. 23–31, DOI: 10.1016/j.agrformet.2018.12.017.
  9. Dobbertin M., Influence of stand structure, site factors on wind damage comparing the storms Vivian and Lothar, Forest, Snow and Landscape Research, 2002, V. 77(1–2), pp. 187–205.
  10. Gardiner B., Byrne K., Hale S. et al., A review of mechanistic modelling of wind damage risk to forests, Forestry, 2008, V. 81, No. 3, pp. 447‒463, DOI: 10.1093/forestry/cpn022.
  11. Hanewinkel M., Kuhn T., Bugmann H. et al., Vulnerability of uneven-aged forests to storm damage, Forestry, 2014, V. 87, No. 4, pp. 525–534, DOI: 10.1093/forestry/cpu008/.
  12. Hansen M. C., Potapov P. V., Moore R. et al., High-resolution global maps of 21st-century forest cover change, Science, 2013, V. 342, No. 6160, pp. 850–853, DOI: 10.1126/science.1244693.
  13. Hart E., Sim K., Kamimura K. et al., Use of machine learning techniques to model wind damage to forests, Agricultural and Forest Meteorology, 2019, V. 265, pp. 16–29, DOI: 10.1016/j.agrformet.2018.10.022.
  14. Hawker L., Uhe P., Paulo L. et al., A 30 m global map of elevation with forests and buildings removed, Environmental Research Letters, 2022, V. 17, Article 024016, DOI: 10.1088/1748-9326/ac4d4f.
  15. IPCC, 2022: Climate change 2022: Impacts, adaptation, and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, New York: Cambridge University Press, 2022, 3056 p., DOI: 10.1017/9781009325844.
  16. Krejci L., Kolejka J., Vozenilek V., Machar I., Application of GIS to empirical windthrow risk model in mountain forested landscapes, Forests, 2018, V. 9, No. 2, Article 96, DOI: 10.3390/f9020096.
  17. Kupfer J. A., Myers A. T., McLane S. E., Melton G. N., Patterns of forest damage in a southern Mississippi landscape caused by Hurricane Katrina, Ecosystems, 2008, V. 11, No. 1, pp. 45–60, DOI: 10.1007/s10021-007-9106-z.
  18. Lässig R., Močalov S. A., Frequency and characteristics of severe storms in the Urals and their influence on the development, structure and management of the boreal forests, Forest Ecology and Management, 2000, V. 135, pp. 179–194, DOI: 10.1016/S0378-1127(00)00309-1.
  19. Lindemann J. D., Baker W. L., Using GIS to analyse a severe forest blowdown in the Southern Rocky Mountains, Intern. J. Geographical Information Science, 2002, V. 16, No. 4, pp. 377–399, DOI: 10.1080/13658810210136069.
  20. Mitchell S. J., Wind as a natural disturbance agent in forests: a synthesis, Forestry, 2013, V. 86, No. 2, pp. 147–157, DOI: 10.1093/forestry/cps058.
  21. Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay É., Scikit-learn: Machine learning in Python, J. Machine Learning Research, 2011, V. 12, pp. 2825–2830.
  22. Peltola H., Kellomäki S., Väisänen H., Ikonen V.-P., A mechanistic model for assessing the risk of wind, snow damage to single trees and stands of Scots pine, Norway spruce and birch, Canadian J. Forest Research, 1999, V. 29, No. 6, pp. 647–661, DOI: 10.1139/x99-029.
  23. Potapov P. V., Turubanova S. A., Tyukavina A. et al., Eastern Europe’s forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive, Remote Sensing of Environment, 2015, V. 159, pp. 28–43, DOI: 10.1016/j.rse.2014.11.027.
  24. Potapov P., Li X., Hernandez-Serna A. et al., Mapping and monitoring global forest canopy height through integration of GEDI and Landsat data, Remote Sensing of Environment, 2021, V. 253, Article 112165, DOI: 10.1016/j.rse.2020.112165.
  25. Saad C., Boulanger Y., Beaudet M. et al., Potential impact of climate change on the risk of windthrow in eastern Canada’s forests, Climatic Change, 2017, V. 143, pp. 487–501, DOI: 10.1007/s10584-017-1995-z.
  26. Saarinen N., Vastaranta M., Honkavaara E. et al., Using multi-source data to map and model the predisposition of forests to wind disturbance, Scandinavian J. Forest Research, 2016, V. 31, No. 1, pp. 66–79, DOI: 10.1080/02827581.2015.1056751.25.
  27. Santoro M., GlobBiomass — global datasets of forest biomass, PANGAEA, 2018, https://doi.org/10.1594/PANGAEA.894711.
  28. Schindler D., Grebhan K., Albrecht A. et al., GIS-based estimation of the winter storm damage probability in forests: a case study from Baden-Wuerttemberg (Southwest Germany), Intern. J. Biometeorology, 2012, V. 56, pp. 57–69, DOI: 10.1007/s00484-010-0397-y.
  29. Seidl R., Fernandes P. M., Fonseca T. F. et al., Modelling natural disturbances in forest ecosystems: A review, Ecological Modelling, 2011, V. 222, No. 4, pp. 903–924, DOI: 10.1016/j.ecolmodel.2010.09.040.
  30. Senf C., Seidl R., Storm and fire disturbances in Europe: Distribution and trends, Global Change Biology, 2021, V. 27, pp. 3605–3619, DOI: 10.1111/gcb.15679.
  31. Shikhov A., Chernokulsky A., Kalinin N. et al., Climatology and formation environments of severe convective windstorms and tornadoes in the Perm region (Russia) in 1984–2020, Atmosphere, 2021, V. 12, No. 11, Article 1407, DOI: 10.3390/atmos12111407.
  32. Suvanto S., Henttonen H. M., Nöjd P., Mäkinen H., Forest susceptibility to storm damage is affected by similar factors regardless of storm type: Comparison of thunder storms and autumn extra-tropical cyclones in Finland, Forest Ecology and Management, 2016, V. 381, pp. 17‒28, DOI: 10.1016/j.foreco.2016.09.005.
  33. Suvanto S., Peltoniemi M., Tuominen S. et al., High-resolution mapping of forest vulnerability to wind for disturbance-aware forestry, Forest Ecology and Management, 2019, V. 453, Article 117619, DOI: 10.1016/j.foreco.2019.117619.
  34. Ulanova N. G., The effects of windthrow on forests at different spatial scales: a review, Forest Ecology and Management, 2000, V. 135, pp. 155–167, DOI: 10.1016/S0378-1127(00)00307-8.