Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 4, pp. 253-266
    
        Automated classification of terroir surface based on satellite spectral patterns and soil sample databases
        V.A. Orlov
 1 , A.A. Lukyanov
 1 1 Anapa Zonal Experimental Station for Viticulture and Winemaking — Branch of North Caucasian Federal Scientific Center for Horticulture, Viticulture, and Winemaking, Anapa, Russia
     
    Accepted: 24.06.2025
DOI: 10.21046/2070-7401-2025-22-4-253-266
Soil characteristics and climatic conditions largely determine the productivity and organoleptic qualities of grapes within a terroir. Terroirs play a pivotal role in agriculture, especially viticulture; however, their typification remains a challenging task. Traditional soil investigation methods — based on laboratory analysis — are labor-intensive, particularly when surveying extensive areas. This study employs an automated method for classifying terroir soil attributes through the analysis of normalized spectral index patterns at soil sampling sites. Vegetation and soil indices were calculated using multispectral satellite data from Sentinel-2 combined with agrochemical test results. Data processing was conducted using a Random Forest (RF) algorithm achieving classification accuracy levels of 85–90 %. Spectral indices indicative of organic matter, clay, sand, stone, salinity, moisture, and soil texture were computed from Sentinel-2 bands. Soil heterogeneity mapping was performed using machine learning algorithms implemented in the cloud-based Google Earth Engine (GEE). The paper presents successful applications of multispectral satellite data and GIS technologies for soil analysis in various viticultural regions, including Italy, California, Chile, Argentina, and Krasnodar Krai of Russia. The results enable the identification of soil zones with different physicochemical properties that significantly affect grape yield and quality. The proposed approach opens new possibilities for automated terroir monitoring, reducing field research costs and providing viticulturists with tools to optimize agronomic practices. The study confirms the high effectiveness of using threshold-based spectral indices combined with RF algorithms for digital classification of soil surfaces in agronomic applications.
Keywords: terroir, spectral patterns, satellite spectrogram, remote sensing, soil samples, machine learning, classification
Full textReferences:
- Vecherov V. V., Application of automated decoding of Sentinel-2 data for creation of updated map-schemes of GIL strata in hard-to-access regions of the Russian Federation, Forestry Information, 2019, No. 2, pp. 5–14 (in Russian), DOI: 10.24419/LHI.2304-3083.2019.2.01.
 - Lapa V. V., Matychenkov D. V., Azarenok T. N., Information system for monitoring dynamics and forecasting soil cover properties, Pochvovedenie i agrokhimiya, 2019, No. 2(63), pp. 7–15 (in Russian).
 - Lukyanov A. A., Petrov V. S., Denisova T. A., Baza dannykh karbonatnykh pochv Anapskogo raiona Krasnodarskogo kraya (Database of carbonate soils of the Anapa district, Krasnodar Territory), Certificate of database registration RU2020621941, 2020, Reg. 12.10.2020 (in Russian).
 - Orlov V. A., Lukyanov A. A., Evaluative features of vineyard-suitable lands based on spectral patterns, Vestnik Kazanskogo gosudarstvennogo agrarnogo untversiteta, 2023, V. 1, pp. 69–37 (in Russian).
 - Orlov V. A., Lukyanov A. A., Mikhaylovskaya O. I., Determination of morphometric indicators of soil surface in vineyard plantations using satellite spectral channels, Agrarnaya nauka, 2024, No. 10, pp. 159–164 (in Russian), DOI: 10.32634/0869-8155-2024-387-10 159 164.
 - Pavlova A. I., Application of vegetation indices for digital soil mapping based on Sentinel-2 satellite imagery, Siberian J. Life Sciences and Agriculture, 2021, V. 13, No. 6, pp. 119–131 (in Russian), DOI: 10.12731/2658-6649-2021-13-6-119-131.
 - Prudnikova E. Yu., Savin I. Yu., Grubina P. G., Satellite based assessment of agronomically important properties of agricultural soils with consideration of their surface state, Dokuchaev Soil Bull., 2023, No. 115, pp. 129–159 (in Russian), https://doi.org/10.19047/0136-1694-2023-115-129-159.
 - Savin I. Y., Savenkova E. V., Kucher D. E. et al., Evaluation of soil cover contrast of arable lands using Sentinel-2 satellite data, Pochvovedenie, 2021, No. 11, pp. 1295–1305 (in Russian), DOI: 10.31857/S0032180X21110125.
 - Timirgaleeva R. R., Grishin I. Y., Rybalko E. A., Analysis of remote diagnostic methods of fertility in vineyard agrocenoses, Distantsionnye obrazovatel’nye tekhnologii: Materialy 4-i Vserossiiskoi nauchno-prakticheskoi konferentsii (s mezhdunarodnym uchastiem) (Distance Learning Technologies: Materials of the 4th All-Russia Scientific and Practical Conference (with international participation), V. N. Taran (ed.), Yalta: OOO “Izd. Tipografiya “Arial”, 2019, pp. 331–338 (in Russian).
 - Khitrov N. B., Gorokhova I. N., Pankova E. I., Remote diagnosis of carbonate content in irrigated soils of the dry steppe zone of Volgograd region, Pochvovedenie, 2021, No. 6, pp. 657–674 (in Russian), DOI: 10.31857/S0032180X21060071.
 - Ammoniaci M., Kartsiotis S.-P., Perria R., Storchi P., State of the art of monitoring technologies and data processing for precision viticulture, Agriculture, 2021, V. 11, No. 3, Article 201, DOI: 10.3390/agriculture11030201.
 - Bartholomeus H. M., Schaepman M. E., Kooistra L. et al., Spectral reflectance based indices for soil organic carbon quantification, Geoderma, 2008, V. 145, No. 1–2, pp. 28–36, DOI: 10.1016/j.geoderma.2008.01.010.
 - Becker S. J., Maloney M. C., Griffin A. W. et al., Bare ground classification using a spectral index ensemble and machine learning models optimized across 12 international study sites, Geocarto Intern., 2025, V. 40, No. 1, Article 2465452, DOI: 10.1080/10106049.2025.2465452.
 - Ben-Dor E., Chabrillat S., Demattê J. A. M., Taylor G. R., Hill J., Whiting M. L., Sommer S., Using imaging spectroscopy to study soil properties, Remote Sensing of Environment, 2009, V. 113, pp. S38–S55.
 - Caruso G., Palai G., Assessing grapevine water status using Sentinel-2 images, Italus Hortus, 2023, V. 30, pp. 70–79, DOI: 10.26353/j.itahort/2023.3.7079.
 - Crespo N., Pádua L., Santos J. A., Fraga H., Satellite remote sensing tools for drought assessment in vineyards and olive orchards: A systematic review, Remote Sensing, 2024, V. 16, No. 11, Article 2040, DOI: 10.3390/rs16112040.
 - de Campos Assunção J. M. S., Terrain classification using machine learning algorithms in a multi temporal approach: Dissertação para obtenção do Grau de Mestre em Engenharia Eletrotécnica e de Computadores. Universidade NOVA de Lisboa, 2021, 24 p.
 - Eslava Lecumberri F. J., Jiménez Ballesta R., Delineating vineyard management zones: Intrafield spatial variability of soil properties of carbonate vineyard soils, European J. Soil Science, 2024, V. 75, No. 6, Article e70029, DOI: 10.1111/ejss.70029.
 - Gomez C., Vaudour E., Féret J.-B. et al., Topsoil clay content mapping in croplands from Sentinel-2 data: Influence of atmospheric correction methods across a season time series, Geoderma, 2022, V. 423, Article 115959, DOI: 10.1016/j.geoderma.2022.115959.
 - Gorelick N., Hancher M., Dixon M. et al., Google Earth Engine: Planetary scale geospatial analysis for everyone, Remote Sensing of Environment, 2017, V. 202, pp. 18–27, DOI: 10.1016/j.rse.2017.06.031.
 - Hall A., Remote sensing applications for viticultural terroir analysis, Elements: An Intern. Magazine of Mineralogy, Geochemistry, and Petrology, 2018, V. 14, No. 3, pp. 185–190, DOI: 10.2138/gselements.14.3.185.
 - Hall A., Lamb D. W., Holzapfel B. P., Louis J., The use of remote sensing and GIS technologies to monitor and manage vineyard uniformity, Australian J. Grape and Wine Research, 2002, V. 8, No. 2, pp. 163–174, DOI: 10.1111/j.1755-0238.2002.tb00208.x.
 - Lasko K., O’Neill F. D., Sava E., Automated mapping of land cover type within international heterogeneous landscapes using Sentinel-2 imagery with ancillary geospatial data, Sensors, 2024, V. 24, No. 5, Article 1587, DOI: 10.3390/s24051587.
 - Mucalo A., Matić D., Morić-Španić A., Čagalj M., Satellite solutions for precision viticulture: Enhancing sustainability and efficiency in vineyard management, Agronomy, 2024, V. 14, No. 8, Article 1862, DOI: 10.3390/agronomy14081862.
 - Mulder V. L., Bartholomeus H., van der Werff H. et al., Estimating soil organic carbon across an agricultural area using hyperspectral reflectance data, Soil Science Society of America J., 2011, V. 75, No. 6, pp. 2215–2225, DOI: 10.2136/sssaj2011.0052.
 - Ortuani B., Mayer A., Bianchi D. et al., Effectiveness of management zones delineated from UAV and Sentinel-2 data for precision viticulture applications, Remote Sensing, 2024, V. 16, No. 4, Article 635, DOI: 10.3390/rs16040635.
 - Parra F., González J., Chacón M., Marín M., Modeling and evaluation of the susceptibility to landslide events using machine learning algorithms in the province of Chañaral, Atacama region, Chile, Sustainability, 2023, V. 15, No. 24, Article 16806, DOI: 10.3390/su152416806.
 - Puig-Sirera À., Antichi D., Raffa D. W., Rallo G., Application of remote sensing techniques to discriminate the effect of different soil management treatments over rainfed vineyards in Chianti terroir, Remote Sensing, 2021, V. 13, No. 4, Article 716, DOI: 10.3390/rs13040716.
 - Ramos T. B., Castanheira N., Oliveira A. R. et al., Soil salinity assessment using vegetation indices derived from Sentinel-2 multispectral data: application to Lezíria Grande, Portugal, Agricultural Water Management, 2020, V. 241, Article 106387, DOI: 10.1016/j.agwat.2020.106387.
 - Secu C. V., Stoleriu C. C., Lesenciuc C. D., Ursu A., Normalized Sand index for identification of bare sand areas South of Romania, Remote Sensing, 2022, V. 14, No. 15, Article 3802, DOI: 10.3390/rs14153802.
 - Simón Sánchez A. M., González-Piqueras J., de la Ossa L., Calera A., Convolutional neural networks for agricultural land use classification from Sentinel-2 image time series, Remote Sensing, 2022, V. 14, No. 21, Article 5373, DOI: 10.3390/rs14215373.
 - Thaler E. A., Larsen I. J., Yu Q., A new index for remote sensing of soil organic carbon based solely on visible wavelengths, Soil Science Society of America J., 2019, V. 83, No. 5, pp. 1443–1450, DOI: 10.2136/sssaj2018.09.0318.
 - Van Leeuwen C., Seguin G., The concept of terroir in viticulture, J. Wine Research, 2006, V. 17, No. 1, pp. 1–10, DOI: 10.1080/09571260600633135.
 - Wang Q., Liu X., Li Z., Hyperspectral remote sensing for soil organic carbon estimation in vineyards: a review, Sensors, 2020, V. 20, No. 19, Article 5548, DOI: 10.3390/s20195548.
 - Zeyada A. M., Al-Gaadi K. A., Tola E. K. et al., Sentinel-2 satellite imagery application to monitor soil salinity and calcium carbonate contents in agricultural fields, Phyton, 2023, V. 92, No. 5, DOI: 10.32604/phyton.2023.027267.