ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 4, pp. 149-163

Thermal anomaly dynamics in the seismically active region of Central Asia

L.G. Sverdlik 1, 2 
1 Research Station RAS in Bishkek City, Bishkek, Kyrgyzstan
2 Kyrgyz–Russian Slavic University, Bishkek, Kyrgyzstan
Accepted: 10.06.2025
DOI: 10.21046/2070-7401-2025-22-4-149-163
The results of a retrospective study on anomalies in changes to the thermal stratification of the atmosphere in the tropopause region above the epicentral areas of six earthquakes with magnitudes M>6.0, which occurred in 2015–2016 in a region stretching from the Pamir-Hindukush seismic zone in Afghanistan (southwest) to Eastern Pamir (Tajikistan) (northeast), are presented. Using these events as examples, an assessment was made of the spatial scale, localization, duration, and timing of the anomalous temperature disturbances. The identification of seismo-atmospheric effects was conducted using a specially developed MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications) algorithm for processing satellite monitoring data based on calculation of the STA/LTA (Short Time Averaging to Long Time Averaging) criterion. The analysis of temperature profiles at levels from 500 to 40 hPa showed that, before each of the studied earthquakes, the atmosphere was in a disturbed state. Pre-seismic anomalies were characterized by increased values of the δTC parameter (≥1.5) and manifested as well-defined mesoscale (300–900 km) areas. The spatial scale of thermal anomalies before strong earthquakes with deep hypocenters (greater than 200 km) was significantly broader. The maximum temperature disturbances were observed 1–5 days before strong earthquakes and were localized above the epicentral areas or within several hundred kilometers off the epicenters, which fully meets the DTS-T (Deviation-Time-Space-Thermal) criteria and can likely be considered as evidence of the interaction between the lithosphere and the atmosphere during the preparation periods of strong earthquakes. Atmospheric gravity waves generated by slow oscillations of the Earth’s surface were considered the most likely mechanism of the formation of pre-seismic disturbances in the lower atmosphere layers.
Keywords: satellite measurements, temperature, earthquake, upper troposphere, lower stratosphere, STA/LTA criterion, integral parameter, anomaly
Full text

References:

  1. Imashev S. A., Sverdlik L. G., Atmospheric and ionospheric anomalies preceding a strong equatorial earthquake in Sumatra, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, V. 19, No. 4, pp. 318–327 (in Russian), DOI: 10.21046/2070-7401-2022-19-4-318-327.
  2. Sverdlik L. G., Identification of pre-seismic atmospheric perturbations using modified STA/LTA criterion, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, V. 18, No. 3, pp. 141–149 (in Russian), DOI: 10.21046/2070-7401-2021-18-3-141-149.
  3. Sverdlik L. G., Atmospheric effects of the largest earthquakes in the Alpine-Himalayan seismic belt, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, V. 19, No. 2, pp. 81–90 (in Russian), DOI: 10.21046/2070-7401-2022-19-2-81-90.
  4. Sverdlik L. G., Dynamics of perturbations in the lower atmosphere in seismically active regions of Asia, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, V. 20, No. 2, pp. 144–152 (in Russian), DOI: 10.21046/2070-7401-2023-20-2-144-152.
  5. Sverdlik L. G., Pre-seismic disturbances of meteorological parameters in the lower atmosphere based on satellite measurements, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 1, pp. 56–68 (in Russian), DOI: 10.21046/2070-7401-2025-22-1-56-68.
  6. Sverdlik L. G., Ibraev A. E., Use of the modified STA/LTA algorithm for detection pre-seismic temperature perturbations in the lower atmosphere, Vestnik Kyrgyzsko-Rossiiskogo slavyanskogo universiteta, 2022, V. 22, No. 12, pp. 190–196 (in Russian), DOI: 10.36979/1694-500X-2022-22-12-190-196.
  7. Sverdlik L. G., Ibraev A. E., Programma “IPPLA” (Identification of Preseismic Perturbations in the Lower Atmosphere) (Program “IPPLA” (Identification of Preseismic Perturbations in the Lower Atmosphere)), Certificate of state registration of software No. 2023612499 (RU), Reg. 03.02.2023 (in Russian).
  8. Sherman S. I., Tectonophysical signs of the formation of strong earthquake foci in seismic zones of Central Asia, Geodynamics and Tectonophysics, 2016, V. 7, No. 4, pp. 495–512 (in Russian), DOI: 10.5800/GT‐2016‐7‐4‐0219.
  9. Aumann H. H., Chahine M. T., Gautier C. et al., AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems, IEEE Trans. Geoscience and Remote Sensing, 2003, V. 41, pp. 253–264, DOI: 10.1109/TGRS.2002.808356.
  10. Bloch W., Metzger S., Schurr B. et al., The 2015–2017 Pamir earthquake sequence: foreshocks, main shocks and aftershocks, seismotectonics, fault interaction and fluid processes, Geophysical J. Intern., 2023, V. 233, No. 1, pp. 641–662, DOI: 10.1093/gji/ggac473.
  11. Chen H., Han P., Hattori K., Recent advances and challenges in the seismo-electromagnetic study: A brief review, Remote Sensing, 2022, V. 14, No. 22, Article 5893, DOI: 10.3390/rs14225893.
  12. Chetia B., Devi M., Kalita S., Barbara A. K., Magnetic storm time effect on upper and lower atmosphere: An analysis through GPS and remote sensing observation over Guwahati, Indian J. Radio and Space Physics, 2017, V. 46, pp. 120–130.
  13. Dobrovolsky I. P., Zubkov S. I., Miachkin V. I., Estimation of the size of earthquake preparation zones, Pure Applied Geophysics, 1979, V. 117, pp. 1025–1044.
  14. Draz M. U., Shah M., Jamjareegulgarn P. et al., Deep machine learning based possible atmospheric and ionospheric precursors of the 2021 Mw 7.1 Japan earthquake, Remote Sensing, 2023, V. 15, No. 7, Article 1904. DOI: 10.3390/rs15071904.
  15. Feng F., Wang K., Merging satellite retrievals and reanalyses to produce global long-term and consistent surface incident solar radiation datasets, Remote Sensing, 2018, V. 10, No. 1, Article 115, DOI: 10.3390/rs10010115.
  16. Genzano N., Filizzola C., Hattori K. et al., Statistical correlation analysis between thermal infrared anomalies observed from MTSATs and large earthquakes occurred in Japan (2005–2015), J. Geophysical Research: Solid Earth, 2021, V. 126, Iss. 2, Article e2020JB020108, DOI: 10.1029/2020JB020108.
  17. Ghosh S., Chowdhury S., Kundu S. et al., Unusual surface latent heat flux variations and their critical dynamics revealed before strong earthquakes, Entropy, 2022, V. 24, No. 1, Article 23, DOI: 10.3390/e24010023.
  18. Harrison R. G., Aplin K. L., Rycroft M. J., Brief Communication: Earthquake-cloud coupling through the global atmospheric electric circuit, Natural Hazards and Earth System Sciences, 2014, V. 14, pp. 773–777, DOI: 10.5194/nhess-14-773-2014.
  19. Jiao Z.-H., Shan X., Statistical framework for the evaluation of earthquake forecasting: A case study based on satellite surface temperature anomalies, J. Asian Earth Sciences, 2021, V. 211, Article 104710, DOI: 10.1016/j.jseaes.2021.104710.
  20. Jiao Z.-H., Zhao J., Shan X., Pre-seismic anomalies from optical satellite observations: a review, Natural Hazards and Earth System Sciences, 2018, V. 18, pp. 1013–1036, DOI: 10.5194/nhess-18-1013-2018.
  21. Kherani E. A., Sanchez S. A., de Paula E. R., Numerical modeling of coseismic tropospheric disturbances arising from the unstable acoustic gravity wave energetics, Atmosphere, 2021, V. 12, Iss. 6, Article 765, DOI: 10.3390/atmos12060765.
  22. Korepanov V., Hayakawa M., Yampolski Y., Lizunov G., AGW as a seismo-ionospheric coupling responsible agent, Physics and Chemistry of the Earth, 2009, V. 34, Iss. 6–7, pp. 485–495, DOI: 10.1016/j.pce.2008.07.014.
  23. Liu J., Cui J., Zhang Y. et al., Study of the OLR anomalies before the 2023 Turkey M7.8 earthquake, Remote Sensing, 2023, V. 15, No. 21, Article 5078, DOI: 10.3390/rs15215078.
  24. Liu S., Cui Y., Wei L. et al., Pre-earthquake MBT anomalies in the Central and Eastern Qinghai-Tibet Plateau and their association to earthquakes, Remote Sensing of Environment, 2023, V. 298, Article 113815, DOI: 10.1016/j.rse.2023.113815.
  25. Lu X., Meng Q., Ma W., Zhang X., Air temperature variations analysis of the Hualian M6.9 earthquake, Atmosphere, 2024, V. 15, Article 1463, DOI: 10.3390/atmos15121463.
  26. Luo B., Minnett P. J., Szczodrak M. et al., Accuracy Assessment of MERRA-2 and ERA-Interim sea surface temperature, air temperature, and humidity profiles over the Atlantic Ocean using AEROSE Measurements, J. Climate, 2020, V. 33, pp. 6889–6909, DOI: 10.1175/JCLI-D-19-0955.1.
  27. McCarty W., Coy L., Gelaro R. et al., MERRA-2 input observations: Summary and initial assessment, Technical Report Series on Global Modeling and Data Assimilation, V. 46, NASA/TM–2016–104606, Goddard Space Flight Center, Greenbelt, Maryland, 2016, 61 p.
  28. Meng L., Liu J., Tarasick D. W. et al., Continuous rise of the tropopause in the Northern Hemisphere over 1980–2020, Science Advances, 2021, V. 7, Iss. 45, 9 p., DOI: 10.1126/sciadv.abi8065.
  29. Panchal H., Saraf A. K., Das J., Dwivedi D., Satellite based detection of pre-earthquake thermal anomaly, co-seismic deformation and source parameter modelling of past earthquakes, Natural Hazards Research, 2022, V. 2, Iss. 4, pp. 287–303, DOI: 10.1016/j.nhres.2022.12.001.
  30. Picozza P., Conti L., Sotgiu A., Looking for earthquake precursors from space: A critical review, Frontiers in Earth Science, 2021, V. 9, Article 676775, DOI: 10.3389/feart.2021.676775.
  31. Qin K., Wu L., Zheng S., Liu S., A Deviation-Time-Space-Thermal (DTS-T) method for Global Earth Observation System of Systems (GEOSS)-based earthquake anomaly recognition: Criterions and quantify indices, Remote Sensing, 2013, V. 5, No. 10, pp. 5143–5151, DOI: 10.3390/rs5105143.
  32. Rasheed R., Chen B., Wu D., Wu L., A comparative study on multi-parameter ionospheric disturbances associated with the 2015 Mw 7.5 and 2023 Mw 6.3 earthquakes in Afghanistan, Remote Sensing, 2024, V. 16, Article 1839, DOI: 10.3390/rs16111839.
  33. Shangguan M., Wang W., Jin S., Variability of temperature and ozone in the upper troposphere and lower stratosphere from multi-satellite observations and reanalysis data, Atmospheric Chemistry and Physics, 2019, V. 19, pp. 6659–6679, DOI: 10.5194/acp-19-6659-2019.
  34. Schekotov A. Yu., Molchanov O. A., Hayakawa M., A study of atmospheric influence from earthquake statistics, Physics and Chemistry of the Earth, Parts A/B/C, 2006, V. 31, Iss. 4–9, pp. 341–345, DOI: 10.1016/j.pce.2006.02.002.
  35. Scherllin-Pirscher B., Steiner A. K., Anthes R. A. et al., Tropical temperature variability in the UTLS: New insights from GPS radio occultation observations, J. Climate, 2021, V. 34, Iss. 8, pp. 2813–2838, DOI: 10.1175/JCLI-D-20-0385.1.
  36. Shi C., Cai W., Guo D., Composition and thermal structure of the upper troposphere and lower stratosphere in a penetrating mesoscale convective complex determined by satellite observations and model simulations, Hindawi Advances in Meteorology, 2017, V. 2017, Article 6404796, 9 p., DOI: 10.1155/2017/6404796.
  37. Sippl C., Schurr B., Yuan X. et al., Geometry of the Pamir-Hindu Kush intermediate-depth earthquake zone from local seismic data, J. Geophysical Research: Solid Earth, 2013, V. 118, Iss. 4, pp. 1438–1457, DOI: 10.1002/jgrb.50128.
  38. Wen T., Wei C., Wang Z. et al., Regional thermal radiation characteristics of FY satellite remote sensing based on big data analysis, J. Sensors, 2023, V. 23, Article 8446, DOI: 10.3390/s23208446.
  39. Xiong P., Shen X., Outgoing longwave radiation anomalies analysis associated with different types of seismic activity, Advances in Space Research, 2017, V. 59, Iss. 5, pp. 1408–1415, DOI: 10.1016/j.asr.2016.12.011.
  40. Xu X., Chen S., Zhang S., Dai R., Analysis of potential precursory pattern at Earth surface and the above atmosphere and ionosphere preceding two Mw ≥ 7 earthquakes in Mexico in 2020–2021, Earth and Space Science, 2022, V. 9, Iss. 10, Article e2022EA002267, DOI: 10.1029/2022EA002267.
  41. Zhang W., Zhao J., Wang W. et al., A preliminary evaluation of surface latent heat flux as an earthquake precursor, Natural Hazards and Earth System Sciences, 2013, V. 13, pp. 2639–2647, DOI: 10.5194/nhess-13-2639-2013.