ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 4, pp. 133-146

Variability of the spectral characteristics of vegetation of altitudinal belts in the south of Siberia

A.A. Karsakov 1 , D.I. Nazimova 1 , E.I. Ponomarev 1 
1 Sukachev Institute of Forest SB RAS, Krasnoyarsk, Russia
Accepted: 08.07.2025
DOI: 10.21046/2070-7401-2025-22-4-133-146
The paper examines the seasonal dynamics of the NDVI (Normalized Difference Vegetation Index) and LST (Land Surface Temperature) spectral indices, which are characteristic of the spatial structure of vegetation of altitudinal-belt complexes (ABC), using the example of the Tanzybey test site in the mountains of Southern Siberia. We used Landsat-8 and Landsat-9 data for the 2023 growing season. Quantitative characteristics of LST and NDVI were investigated for five ABC represented in the region, such as belts of highlands with rocky outcrops, subalpine, mountain-taiga, dark coniferous chern forest and subtaiga belt. The most significant differences in the ranges of NDVI and LST values were observed in May–June, which is associated with the asynchrony between the beginning of the growing season depending on the vegetation structure. It is demonstrated that transitions between the ABC are accompanied by abrupt changes in LST and NDVI. The quantitative characteristics of temperature (LST) and vegetation (NDVI) features characterizing vegetation covers of altitudinal zonality during the growing season fit into two typical scenarios applicable to the description of a group of low-mountain ABC (dark coniferous chern forests, light coniferous subtaiga) and mid-high-mountain ABC (mountain-taiga, subalpine and the belt of highlands with rocky outcrops). Spectral differences in the ABC during the vegetation season are most informative in the initial period phases (May–June) and are not distinguishable taking into account the intersection of confidence intervals between values in the phenophase of full summer (August) and in the autumn period. Under conditions of the end of the vegetation season (September), significant differences are only characteristic of the distinction between the dark coniferous chern and subtaiga ABC relative to the ABC of the mountain-taiga and subalpine zone.
Keywords: Landsat, spectral indices, LST, NDVI, altitudinal belts, formations
Full text

References:

  1. Bartalev S. A., Egorov V. A., Zharko V. O., Loupian E. A., Plotnikov D. E., Khvostikov S. A., Shabanov N. V., Sputnikovoe kartografirovanie rastitel’nogo pokrova Rossii (Land cover mapping over Russia using Earth observation data), Moscow: IKI RAN, 2016, 208 p. (in Russian).
  2. Gorny V. I., Brovkina O. V., Kiselev A. V., Tronin A. A., Trends in remote sensing methods for geological and environmental applications, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, V. 20, No. 2, pp. 9–38 (in Russian), DOI: 10.21046/2070-7401-2023-20-2-9-38.
  3. Danilina D. M., Nazimova D. I., Gosteva A. A. et al., Identification of potential areas of protected plant species using the ecological-geographical basis, Geografiya i prirodnye resursy, 2018, No. 1, pp. 42–51 (in Russian), DOI: 10.21782/gipr0206-1619-2018-1(42-51).
  4. Isachenko A. G., Landshaftovedenie i fiziko-geograficheskoe raionirovanie (Landscape science and physical-geographical zoning), Moscow: Vysshaya shkola, 1991, 366 p. (in Russian).
  5. Isachenko A. G., Teoriya i metodologiya geograficheskoi nauki (Theory and methodology of geographical science), Moscow: Akademiya, 2004, 400 p. (in Russian).
  6. Karsakov A. A., Ponomarev E. I., Remote monitoring of the thermal condition of underlying surface under the conditions of anthropogenic transformation, Biosfera, 2024, V. 16, No. 1, pp. 20–29 (in Russian).
  7. Molokova N. I., Ehkologo-tsenoticheskii analiz i fenoindikatsiya vysotno-poyasnykh kompleksov tipov lesa (na primere gumidnykh raionov Sayan): Avtoref. dis. … kand. biol. nauk (Ecological-cenotic analysis and phenoindication of altitudinal-belt complexes of forest types (Based on the example of humid regions of the Sayan Mountains), Cand. biol. sci. thesis abstract), Krasnoyarsk, 1992, 23 p. (in Russian).
  8. Molokova N. I., Nazimova D. I., Phenological criteria as indicators of the functioning of communities and ecosystems, Trudy Mezhdunarodnoi konferentsii “Botanika i botaniki v menyayushchemsya mire” (Proc. Intern. Conf. “Botany and Botanists in a Changing World”), Tomsk: Tomsk State University, 2023, pp. 42–44 (in Russian).
  9. Nazimova D. I., Ponomarev E. I., Stepanov N. V., Fedotova E. V., Dark-coniferous chern forests in the Krasnoyarsk Region and their mapping issues, Lesovedenie, 2005, No. 1, pp. 12–18 (in Russian).
  10. Nazimova D. I., Ponomarev E. I., Konovalova M. E., Role of an altitudinal zonal basis and remote sensing data in the sustainable management of mountain forests, Contemporary Problems of Ecology, 2020, V. 13, No. 1, pp. 742–753, DOI: 10.1134/S1995425520070070.
  11. Nazimova D. I., Koshkarova V. L., Danilina D. M., Konovalova M. E., The spatio-temporal dynamics of mountain dark-coniferous forests in the south of Priyenisei Siberia in the climate change, Izvestiya Rossiiskoi akademii nauk. Seriya geograficheskaya, 2023, V. 87, No. 8, pp. 1224–1237 (in Russian), DOI: 10.31857/S2587556623080149.
  12. Polikarpov N. P., Chebakova N. M., Nazimova D. I., Klimat i gornye lesa Yuzhnoi Sibiri (Climate and mountain forests of Southern Siberia), V. V. Kuz’michev (ed.), Novosibirsk: Nauka, 1986, 225 p. (in Russian).
  13. Ponomarev E. I., Ismailova D. M., Nazimova D. I., Satellite monitoring of Sayan Mountain forest ecosystems, J. Siberian Federal University, 2011, V. 4, No. 1, pp. 75–85.
  14. Semechkin I. V., Polikarpov N. P., Iroshnikov A. I. et al., Kedrovye lesa Sibiri (Cedar forests of Siberia), Novosibirsk: Nauka. Sibirskoe otdelenie, 1985, 256 p. (in Russian).
  15. Smagin V. N., Il’inskaya S. A., Nazimova D. I., Cherednikova Yu. S., Tipy lesov gor Yuzhnoi Sibiri (Types of forests in the mountains of Southern Siberia), V. N. Smagin (ed.), Novosibirsk: Nauka. Sibirskoe otdelenie, 1980, 334 p. (in Russian).
  16. Chebakova N. M., Sadovnichaya E. A., Link between vertical zonation and climatic radiation factors in the Western Sayan, Geografiya i prirodnye resursy, 1985, V. 3, No. 1, pp. 53–58 (in Russian).
  17. Shamrikova E. V., Zhangurov E. V., Kulyugina E. E. et al., Soils and the soil cover of mountainous tundra landscapes on calcareous rocks in the Polar Urals: diversity, taxonomy, and nitrogen and carbon patterns, Eurasian Soil Science, 2020, V. 53, No. 9, pp. 1206–1221, DOI: 10.1134/S106422932009015X.
  18. Baratto J., de Bodas Terassi P. M., Galvani E., Changes in vegetation cover and the relationship with surface temperature in the Cananéia–Iguape Coastal System, São Paulo, Brazil, Remote Sensing, 2024, V. 16, No. 18, Article 3460, DOI: 10.3390/rs16183460.
  19. Ciazela M., Ciazela J., Topoclimate mapping using Landsat ETM+ thermal data: Wolin Island, Poland, Remote Sensing, 2021, V. 13, No. 14, Article 2712, DOI: 10.3390/rs13142712.
  20. Doubkova M., Van Dijk A. I. J. M., Sabel D. et al., Evaluation of the predicted error of the soil moisture retrieval from C-band SAR by comparison against modelled soil moisture estimates over Australia, Remote Sensing Environment, 2012, V. 120, pp. 188–196, DOI: 10.1016/j.rse.2011.09.031.
  21. Fu J., Liu J., Qin J. et al., Monitoring long-term vegetation dynamics over the Yangtze River Basin, China, using multi-temporal remote sensing data, Ecosphere, 2024, V. 15, No. 3, Article e4809, DOI: 10.1002/ecs2.4809.
  22. Halefom A., He Y., Nemoto T. et al., The impact of urbanization-induced land use change on land surface temperature, Remote Sensing, 2024. V. 16, No. 23, Article 4502, DOI: 10.3390/rs16234502.
  23. Loupian E., Bourtsev M., Proshin A. et al., Usage experience and capabilities of the VEGA-Science system, Remote Sensing, 2022, V. 14, No. 1, Article 77, DOI: 10.3390/rs14010077.
  24. Nazimova D. I., Danilina D. M., Stepanov N. V., Rain-barrier forest ecosystems of the Sayan mountains, Botanica Pacifica, 2014, V. 3, No. 1, pp. 37–47.
  25. Qureshi S., Alavipanah S. K., Konyushkova M. et al., A remotely sensed assessment of surface ecological changes over the Gomishan Wetland, Iran, Remote Sensing, 2020, V. 12, No. 18, Article 2989, DOI: 10.3390/RS12182989.
  26. Tucker C. J., Red and photographic infrared linear combinations for monitoring vegetation, J. Remote Sensing Environment, 1979, V. 2, No. 8, pp. 127–150.
  27. Vickers H., Karlsen S. R., Malnes E., A 20-year MODIS-based snow cover dataset for Svalbard and its link to phenological timing and sea ice variability, Remote Sensing, 2020, V. 12, No. 7, Article 1123, DOI: 10.3390/rs12071123.