Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 4, pp. 349-363
Ground-level cold waves over the Crimean Peninsula based on ground and satellite observations
T.E. Danova
1 , T.M. Bayankina
1 1 Marine Hydrophysical Institute RAS, Sevastopol, Russia
Accepted: 02.07.2025
DOI: 10.21046/2070-7401-2025-22-4-349-363
We identified and interpreted spatiotemporal changes in cold waves of various genesis over the Crimean Peninsula using comparative analysis of satellite data from MODIS/Terra spectroradiometer, synoptic information and data from a discrete network of meteorological observations. To define cold waves, we used 3rd percentile thresholds for the annual distribution of minimum and mean daily temperature. We found that based on direction, cold waves in the region divide into five groups: three groups with a northern component (76 %), two groups with a southern component (24 %). All the groups are characterized by common patterns: a cold wave formation is preceded by a cyclone and associated frontal sections, the duration and intensity of subsequent cold influx depend on the orientation of the zone of baric gradients and their magnitude. We identified the most powerful cold waves associated with the invasion from the northeastern direction onto the Black Sea coast, for which cloudless zones with a pronounced flow direction are observed, according to MODIS data. These zones indicate significant wind speeds, typical of the Black Sea and Novorossiysk boras in winter.
Keywords: Black Sea region, Crimean Peninsula, cold waves, MODIS/Terra satellite images
Full textReferences:
- Bayankina T. M., Danova T. E., Cyclogenesis in the Mediterranean-Black Sea region from satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, V. 17, No. 3, pp. 231–239 (in Russian), DOI: 10.21046/2070-7401-2020-17-3-231-239.
- Bedritsky A. I., Korshunov A. A., Shaimardanov M. Z., Opasnye gidrometeorologicheskie yavleniya i ikh vliyanie na ehkonomiku Rossii (Dangerous hydrometeorological phenomena and their impact on the Russian economy), Obninsk: VNIIGMI-MTSD, 2001, 36 p. (in Russian).
- Galeev A. A., Ershov D. V., Loupian E. A. et al., Organization of a data processing, storage and presentation unit for the MODIS device for a forest fire monitoring system, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2004, Iss. 1, V. 1, pp. 115–125 (in Russian).
- German M. A., Kosmicheskie metody issledovaniya v meteorologii (Space methods of research in meteorology), Leningrad: Gidrometeoizdat, 1985, 351 p. (in Russian).
- Gorbunov R. V., Gorbunova T. Yu., Kalinovsky P. S. et al., Role of atmospheric circulation in air temperature changes on the Crimean Peninsula in the XX century – beginning of XXI century, Trudy Glavnoi geofizicheskoi observatorii im. A. I. Voeikova, 2016, No. 580, pp. 175–198 (in Russian).
- Danova T. E., Heat and cold waves on the Crimean Peninsula and their impact on population health, Ekologiya cheloveka, 2023, V. 30, No. 9, pp. 681–694 (in Russian), DOI: 10.17816/humeco604353.
- Yergina E. I., Zhuk V. O., Space-time variability of climate of winter seasons in Crimea, Uchenye zapiski Krymskogo federal’nogo universiteta imeni V. I. Vernadskogo. Geografiya. Geologiya, 2018, V. 4 (70), No. 1, pp. 104–121 (in Russian).
- Efimov V. V., Komarovskaya O. I., Spatial-temporal structure of bora in Yalta, Physical Oceanography, 2015, No. 3, pp. 3–13, DOI: 10.22449/1573-160X-2015-3-3-13.
- Efimov V. V., Shokurov M. V., Yarovaya D. A., Hein D., Statistics of mesoscale cyclonic Eddies over the Black Sea, Physical Oceanography, 2009, V. 19, No. 4, pp. 211–224, DOI: 10.1007/s11110-009-9052-8.
- Efimov V. V., Komarovskaya O. I., Bayankina T. M., Temporal characteristics and synoptic conditions of extreme bora formation in Novorossiysk, Physical Oceanography, 2019, V. 26, No. 5, pp. 361–373, DOI: 10.22449/1573-160X-2019-5-361-373.
- Kononova N. K., Atmospheric circulation in the European sector of the Northern Hemisphere in the 21st century and temperature fluctuations in Crimea, Geopolitika i ehkogeodinamika regionov, 2014, V. 10, No. 1, pp. 633–639 (in Russian).
- Otsenka riska i ushcherba ot klimaticheskikh izmenenii, vliyayushchikh na povyshenie urovnya zabolevaemosti i smertnosti v gruppakh naseleniya povyshennogo riska: metodicheskie rekomendatsii MR 2.1.10.0057-12 (Assessment of the risk and damage from climate change affecting the increase in morbidity and mortality in high-risk populations: Methodological recommendations MR 2.1.10.0057-12), Moscow: Federal’nyi tsentr gigieny i ehpidemiologii Rospotrebnadzora, 2012, 48 p. (in Russian).
- Revich B. A., Grigorieva E. A., Health risks to the Russian population from weather extremes in the beginning of the XXI century. Part 1. Heat and cold waves, Issues of Risk Analysis, 2021, V. 18, No. 2, pp. 12–33 (in Russian), DOI: 10.32686/1812-5220-2021-18-2-12-33.
- Tolmacheva N. I., Kosmicheskie metody issledovanii v meteorologii. Interpretatsiya sputnikovykh izobrazhenii (Space research methods in meteorology. Interpretation of satellite images), Perm: Permskii gosudarstvennyi natsional’nyi issledovatel’skii universitet, 2012, 208 p. (in Russian).
- Barnett A. G., Hajat S., Gasparrini A., Rocklöv J., Cold and heat waves in the United States. Environmental Research, 2012, V. 112, pp. 218–224, DOI: 10.1016/j.envres.2011.12.010.
- Houghton J. T., Ding Y., Griggs D. J., Noguer M., van der Linden P. J., Dai X., Maskell K., Johnson C. A., Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge: Cambridge University Press, 2001, 893 p.
- Justice C. O., Townshend J. R. G., Markham B. L., Cover MODIS spatial resolution study, Intern. J. Remote Sensing, 1987, V. 8, Iss. 8, pp. 1119–1121, DOI: 10.1080/01431168708954759.
- Klein Tank A., Wijngaard J., van Engelen A., Climate of Europe: assessment of observed daily temperature and precipitation extremes, De Bilt, Netherlands: Royal Dutch Meteorological Institute, 2002, 36 p.
- Lionello P., Dalan F., Elvini E., Cyclones in the Mediterranean region: the present and the doubled CO2 climate scenarios, Climate Research, 2002, V. 22, pp. 147–159.
- Piticar A., Croitoru A.-E., Ciupertea F.-A., Harpa G.-V., Recent changes in heat waves and cold waves detected based on excess heat factor and excess cold factor in Romania, Intern. J. Climatology, 2017, V. 38, Iss. 4, pp. 1777–1793, DOI: 10.1002/joc.5295.
- Rahmstorf S., Coumou D., Increase of extreme events in a warming world, Proc. National Academy of Sciences, 2011, V. 108, No. 44, P. 17905–17909, DOI: 10.1073/pnas.1101766108.
- Trigo I. F., Bigg G. R., Davies T. D., Climatology of cyclogenesis mechanisms in the Mediterranean, Monthly Weather Review, 2002, V. 130, pp. 549–649.
- Salomonson V. V., Barnes W. L., Maymon P. W. et al., MODIS: advanced facility instrument for studies of the Earth as a system, IEEE Trans. Geoscience and Remote Sensing, 1989, V. 27, No. 2, pp. 145–153, DOI: 10.1109/36.20292.
- Sheridan S. C., Allen M. J., Temporal trends in human vulnerability to excessive heat, Environmental Research Letters, 2018, V. 13, No. 4, Article 043001.