ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 4, pp. 87-97

Algorithms for chlorophyll a concentration estimation in the Laptev Sea using satellite ocean color data

S.V. Vazyulya 1 , E.A. Aglova 1, 2 , I.V. Sahling 1 , A.B. Demidov 1 , D.I. Glukhovets 1, 2 
1 Shirshov Institute of Oceanology RAS, Moscow, Russia
2 Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
Accepted: 02.07.2025
DOI: 10.21046/2070-7401-2025-22-4-87-97
In seas affected by river runoff, the use of regional algorithms can significantly improve the accuracy of remotely sensed chlorophyll a concentration estimates. The paper presents regional algorithms for assessing the concentration of chlorophyll a in the Laptev Sea using data from MODIS (Moderate Resolution Imaging Spectroradiometer) and VIIRS (Visible Infrared Imaging Radiometer Suite) satellite ocean color scanners. The algorithms are created on the basis of shipboard measurements taken during cruises in 2015, 2017 and 2018. Analysis of the accuracy parameters of the computation formula made it possible to select spectral channels for calculating the color index and criteria for selecting satellite data to determine the formula coefficients. It is shown that the absence of negative values of remote sensing reflectance for any spectral channel in the visible range is a good quality marker for satellite data. The accuracy of the presented algorithms is 30 % for waters with chlorophyll a concentration in the range of 0.1–1.5 mg·m-3. For additional validation of the obtained algorithms, flow-through fluorimeter measurement data were used. Measurements were made both near the Lena River delta and in low-productivity waters. Multiple linear regression equations were used to calibrate the fluorimetric measurement data. This made it possible to take into account the contribution of fluorescence of colored dissolved organic matter in waters strongly influenced by river runoff. The average relative error of chlorophyll a concentration satellite estimates for the regions of fluorimetric measurements is less than 25 %.
Keywords: regional algorithm, chlorophyll a concentration, color index, MODIS, VIIRS, Laptev Sea, river runoff
Full text

References:

  1. Vazyulya S. V., Sahling I. V., Demidov A. B., Glukhovets D. I., Regional algorithm for assessing chlorophyll concentration in the Laptev Sea from MODIS data, Mezhdunarodnyi simpozium “Optika atmosfery i okeana. Fizika atmosfery”: sbornik statei (Intern. Symp. “Atmospheric and Ocean Optics. Atmospheric Physics”: Book of articles), Tomsk: Izd. IOA SO RAN, 2024, pp. C1–C4 (in Russian).
  2. Vetrov A. A., Romankevich E. A., Belyaev N. A., Chlorophyll, primary production, fluxes and balance of organic carbon in the Laptev Sea, Geochemistry International, 2008, V. 46, No. 10, pp. 1055–1063, DOI: 10.1134/S0016702908100091.
  3. Glukhovets D. I., Artemiev V. A., Satellite observations of the river runoff distribution in the Laptev Sea, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, V. 14, No. 1, pp. 175–184 (in Russian), DOI: 10.21046/2070-7401-2017-14-1-175-184.
  4. Goldin Y. A., Glukhovets D. I., Gureev B. A. et al., Shipboard flow-through complex for measuring bio-optical and hydrological seawater characteristics, Oceanology, 2020, V. 60, No. 5, pp. 713–720, DOI: 10.1134/S0001437020040104.
  5. Demidov A. B., Sheberstov S. V., Gagarin V. I. (2019a), Seasonal variability and annual Laptev Sea phytoplankton primary production using MODIS-Aqua data, Issledovanie Zemli iz kosmosa, 2019, No. 6, pp. 48–65 (in Russian).
  6. Demidov A. B., Gagarin V. I., Arashkevich E. G. et al. (2019b), Spatial variability of primary production and chlorophyll in the Laptev Sea in August–September, Oceanology, 2019, V. 59, No. 5, pp. 678–691, DOI: 10.1134/S0001437019050047.
  7. Demidov A. B., Gagarin V. I., Artemiev V. A. et al., Vertical variability of primary production and features of the subsurface chlorophyll maximum in the Laptev Sea in August–September, 2015, 2017, and 2018, Oceanology, 2020, V. 60, No. 2, pp. 189–204, DOI: 10.1134/S0001437020010063.
  8. Kuznetsova O. A., Kopelevich O. V., Sheberstov S. V. et al., Estimation of chlorophyll concentration in the Kara Sea from data of MODIS Aqua satellite scanner, Issledovanie Zemli iz kosmosa, 2013, No. 5, pp. 21–31 (in Russian), DOI: 10.7868/S0205961413050023.
  9. Flint M. V., Poyarkov S. G., Rymsky-Korsakov N. A., Ecosystems of the Russian Arctic-2015 (63rd Cruise of the research vessel Akademik Mstislav Keldysh), Oceanology, 2016, V. 56, No. 3, pp. 459–461, DOI: 10.1134/S0001437016030061.
  10. Flint M. V., Poyarkov S. G., Rymsky-Korsakov N. A., Ecosystems of the Siberian Arctic Seas-2017 (Cruise 69 of the R/V Akademik Mstislav Keldysh), Oceanology, 2018, V. 58, No. 2, pp. 315–318, DOI: 10.1134/S0001437018020042.
  11. Flint M. V., Poyarkov S. G., Rymsky-Korsakov N. A., Miroshnikov A. Yu., Ecosystems of the Siberian Arctic Seas 2018 (Cruise 72 of the R/V Akademik Mstislav Keldysh), Oceanology, 2019, V. 59, No. 3, pp. 460–463, DOI: 10.1134/S0001437019030056.
  12. Sheberstov S. V., A system for batch processing of oceanographic satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, V. 12, No. 6, pp. 154–161 (in Russian).
  13. Bienhold C., Schourup-Kristensen V., Krumpen T. et al., Effects of sea ice retreat and ocean warming on the Laptev Sea continental slope ecosystem (1993 vs 2012), Frontiers in Marine Science, 2022, V. 9, Article 1004959, DOI: 10.3389/fmars.2022.1004959.
  14. Gonçalves-Araujo R., Rabe B., Peeken I., Bracher A., High colored dissolved organic matter (CDOM) absorption in surface waters of the central-eastern Arctic Ocean: Implications for biogeochemistry and ocean color algorithms, PLoS ONE, 2018, V. 13, Iss. 1, Article e0190838, DOI: 10.1371/journal.pone.0190838.
  15. Heim B., Abramova E., Doerffer R. et al., Ocean colour remote sensing in the Southern Laptev Sea: evaluation and applications, Biogeosciences, 2014, V. 11, Iss. 15, pp. 4191–4210, DOI: 10.5194/bg-11-4191-2014.
  16. Holm-Hansen O., Riemann B., Chlorophyll a determination: improvements in methodology, Oikos, 1978, V. 30, No. 3, pp. 438–447, DOI: 10.2307/3543338.
  17. Holm-Hansen O., Lorenzen C. J., Holmes R. W., Strickland J. D. H., Fluorometric determination of chlorophyll, J. du Conseil, 1965, V. 30, Iss. 1, pp. 3–15, DOI: 10.1093/icesjms/30.1.3.
  18. Kostianoy A. G., Lavrova O. Y., Strochkov A. Y., Satellite instrumentation and technique for monitoring of seawater quality, In: Instrumentation and Measurement Technologies for Water Cycle Management, Berlin: Springer, 2022, pp. 79–109, DOI: 10.1007/978-3-031-08262-7_5.
  19. Li J., Matsuoka A., Pang X. et al., Performance of algorithms for retrieving chlorophyll a concentrations in the Arctic Ocean: Impact on primary production estimates, Remote Sensing, 2024, V. 16, Iss. 5, Article 892, DOI: 10.3390/rs16050892.
  20. Mograne M. A., Jamet C., Loisel H. et al., Evaluation of five atmospheric correction algorithms over French optically-complex waters for the Sentinel-3A OLCI ocean color sensor, Remote Sensing, 2019, V. 11, Iss. 6, Article 668, DOI: 10.3390/rs11060668.
  21. Siegel D. A., DeVries T., Cetinic I., Bisson K. M., Quantifying the ocean’s biological pump and its carbon cycle impacts on global scales, Annual Review of Marine Science, 2023, V. 15, pp. 329–356, DOI: 10.1146/annurev-marine-040722-115226.
  22. Vazyulya S. V., Sahling I. V., Glukhovets D. I., Demidov A. B., Regional algorithms for chlorophyll concentration estimation in the Kara Sea from MODIS ocean color data, Atmospheric and Oceanic Optics, 2024, V. 37, pp. S135–S143, DOI: 10.1134/S1024856024701641.