ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 3, pp. 290-298

Distribution of aerosol particles in Leningrad Region along the wind direction from Saint Petersburg

D.A. Samulenkov 1 , M.V. Sapunov 1 , E.V. Abakumov 1 
1 Saint Petersburg State University, Saint Petersburg, Russia
Accepted: 17.04.2025
DOI: 10.21046/2070-7401-2025-22-3-290-298
The article presents the results of lidar measurements of the distribution of aerosol particles at a distance from Saint Petersburg along the path of wind direction in order to assess the transport and dispersion of aerosols formed over Saint Petersburg and adjacent regions. The measurements were carried out by the mobile lidar complex of the Observatory of Environmental Safety Resource Center of Saint Petersburg State University Science Park. The measurements were carried out with wind and aerosol lidar which made it possible to control both the wind direction and the content of the aerosol component. The measurements were carried out in the summer and autumn seasons in 2024, during daytime. The maximum content of aerosol particles was observed in the boundary layer of the atmosphere at an altitude of up to 1 km. The maximum amount of aerosol particles in an air column from 350 m to 2 km with an area of 1 cm2 was observed at sites closest to the city, with a total aerosol content of 300 to 400 million particles. As the air mass moves away from the city, the number of particles in the air column decreases. The decrease in aerosol particle concentrations between observation sites is in the range of 0.5 to 3.3 million particles per kilometer. A decrease in the aerosol content indicates dispersion and precipitation of aerosol particles, as well as the absence of significant additional sources of emission along the path of the air mass.
Keywords: lidar, aerosol, wind, distribution, concentration
Full text

References:

  1. Ahmet’yanov V. R., Vasil’ev D. N., Konyaev M. A., Mishina O. A., Penkin M. S., Petrov G. A., Tezadov Ya. A., Shatalov I. V., Shiryaev I. F., Methods and data processing algorithms of wind coherent dopler lidar profilometer with conical scanning, Zhurnal radioelektroniki, 2013, No. 10, 20 p. (in Russian).
  2. Belan B. D., Ivlev G. A., Kozlov A. S., Marinaite I. I., Penenko V. V., Pokrovskii E. V., Simonenkov D. V., Fofonov A. V., Khodzher T. V., Comparative estimate of air composition in industrial cities of Siberia, Optika atmosfery i okeana, 2007, V. 20, No. 5, pp. 428–437 (in Russian).
  3. Veselovskii I. A., Distantsionnaya lazernaya diagnostika aerozol’nykh i gazovykh sostavlyayushchikh atmosfery metodami romanovskogo i uprugogo rasseyaniya: Diss. dokt. fiz.-mat. nauk (Remote laser diagnostics of aerosol and gas constituents of the atmosphere by Roman and elastic scattering methods, Dr. ph.-math. sci. thesis), Moscow, 2005, 391 p. (in Russian).
  4. Ivlev L. S., Khimicheskii sostav i struktura atmosfernykh aehrozolei (Chemical composition and structure of atmospheric aerosols), Leningrad: Izd. Leningradskogo universiteta, 1982, 368 p. (in Russian).
  5. Ivlev L. S., The properties of aerosols and aerosol-forming contaminants of the lower atmosphere in Leningrad oblast, Biosfera, 2015, V. 7, No. 4, pp. 403–413 (in Russian).
  6. Luzheckaya A. P., Opticheskie i mikrofizicheskie kharakteristiki atmosfernogo aehrozolya na Srednem Urale po dannym mnogoletnikh spectral’nykh fotometricheskikh izmerenii: Avtoref. diss. kand. fiz.-mat. nauk (Optical and microphysical characteristics of atmospheric aerosol in the Middle Urals based on data of long-term spectral photometric measurements, Cand. ph.-math. sci. thesis abstract), Tomsk, 2018, 23 p. (in Russian).
  7. Poddubny V. A., Luzhetskaya A. P., Markelov Yu. I., Kabanov D. M., Estimation of a city influence on atmospheric AOD from data of two-point measurements of the “background–industrial city” system, Optika atmosfery i okeana, 2012, V. 25, No. 4, pp. 319–326 (in Russian).
  8. Uzhegova N. V., Antokhin P. N., Belan B. D., Ivlev G. A., Kozlov A. V., Fofonov A. V., Extraction of anthropogenic contribution to change of city’s air temperature, humidity, gas and aerosol composition, Optika atmosfery i okeana, 2011, V. 24, No. 7, pp. 589–596 (in Russian).
  9. Althausen D., Müller D., Ansmann A. et al., Scanning 6-wavelength 11-channel aerosol lidar, J. Atmospheric and Oceanic Technology, 2000, No. 17, pp. 1469–1482, DOI: 10.1175/1520-0426(2000)017<1469:SWCAL>2.0.CO;2.
  10. Cash J. M., Di Marco C., Langford B. et al., Response of organic aerosol to Delhi’s pollution control measures over the period 2011–2018, Atmospheric Environment, 2023, V. 315, Article 120123, DOI: 10.1016/j.atmosenv.2023.120123.
  11. Chudnovsky A. A., Lee H. J., Kostinski A. et al., Prediction of daily fine particulate matter concentrations using aerosol optical depth retrievals from the Geostationary Operational Environmental Satellite (GOES), J. Air and Waste Management Association, 2012, V. 62, Iss. 9, pp. 1022–1031, DOI: 10.1080/10962247.2012.695321.
  12. Deng X., Tie X., Wu D. et al., Long-term trend of visibility and its characterizations in the Pearl River Delta (PRD) region, China, Atmospheric Environment, 2008, V. 42, Iss. 7, pp. 1424–1435, DOI: 10.1016/j.atmosenv.2007.11.025.
  13. Kertész Z., Shafa A., Anikó A. et al., Characterization of urban aerosol pollution before and during the COVID-19 crisis in a central-eastern European urban environment, Atmospheric Environment, 2024, V. 318, Article 120267, DOI: 10.1016/j.atmosenv.2023.120267.
  14. Klett J. D., Lidar inversion with variable backscatter/extinction ratios, Applied Optics, 1985, V. 24, Iss. 11, pp. 1638–1643, https://doi.org/10.1364/AO.24.001638.
  15. Morozova A. E., Sizov O. S., Elagin P. O. et al., Integral assessment of atmospheric air quality in the largest cities of Russia based on TROPOMI (Sentinel-5P) data for 2019–2020, Cosmic Research, 2022, V. 60, pp. S57–S68, DOI: 10.1134/S0010952522700071.
  16. Sicard P., Agathokleous E., De Marco A. et al., Urban population exposure to air pollution in Europe over the last decades, Environmental Sciences Europe, 2021, V. 33, Article 28, DOI: 10.1186/s12302-020-00450-2.
  17. Singh J., Payra S., Mishra M. K., Verma S., An analysis of particulate pollution using urban aerosol pollution island intensity over Delhi, India, Environmental Monitoring and Assessment, 2022, V. 194, Article 874, DOI: 10.1007/s10661-022-10573-z.
  18. Southerland V. A., Brauer M., Mohegh A. et al., Global urban temporal trends in fine particulate matter (PM2.5) and attributable health burdens: estimates from global datasets, The Lancet Planet Health, 2022, V. 6, Iss. 2, pp. e139–e146, DOI: 10.1016/S2542-5196(21)00350-8.
  19. van Donkelaar A., Martin R. V., Brauer M., Boys B. L., Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter, Environmental Health Perspectives, 2015, V. 123, Iss. 2, pp. 135–143, DOI: 10.1289/ehp.1408646.
  20. Wang J., Christopher S. A., Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies, Geophysical Research Letters, 2003, V. 30, Iss. 21, Article 2095, DOI: 10.1029/2003GL018174.
  21. Zhang Y., Zhu X., Slanina S. et al., Aerosol pollution in some Chinese cities (IUPAC Technical Report), Pure and Applied Chemistry, 2004, V. 76, No. 6, pp. 1227–1239, DOI: 10.1351/pac200476061227.
  22. Zhdanova E. Y., Chubarova N. Y., Lyapustin A. I., Assessment of urban aerosol pollution over the Moscow megacity by the MAIAC aerosol product, Atmospheric Measurement Techniques, 2020, V. 13, Iss. 2, pp. 877–891, DOI: 10.5194/amt-13-877-2020.