ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 3, pp. 64-80

Algorithm for using satellite imagery to identify promising areas for introduction of heat-loving agricultural crops: A case study of Novgorod Region

V.I. Gornyy 1 , O.V. Balun 1 , A.V. Kiselev 1 , I.A. Smirnov 2 , A.A. Tronin 1 , E.P. Shkodina 1 
1 Saint Petersburg Federal Research Center RAS, Saint Petersburg, Russia
2 Yaroslav-the-Wise Novgorod State University, Veliky Novgorod, Russia
Accepted: 21.04.2025
DOI: 10.21046/2070-7401-2025-22-3-64-80
The observed climate warming has highlighted the importance of introducing heat-loving, high-yielding crops in the Non-Chernozem Zone of Russia. However, not all areas of this zone have reached the required active temperature for growing these crops. Thus, the purpose of this study is to develop an algorithm that uses satellite imagery to identify areas with increased heat availability, which is the first step towards introduction of these crops in the Non-Chernozem region. It is known that the thermal regime of soils depends on meteorological factors, agrophysical properties of soils, insolation levels of different forms of terrain, and presence of endogenic heating. Therefore, it is important to identify the most thermally favorable agricultural lands for economically viable cultivation of heat-loving exotic plants. To address this issue, Novgorod Region has been chosen as the focus of research, as Novgorod Agricultural Research Institute has been conducting agroecological trials of heat-loving sorghum varieties since 2016. The results of this long-term research form the basis for creating forecast maps of potential sorghum crop yields and identifying promising areas for cultivation. To generate these maps, we used a large amount of digital data from daily satellite infrared-thermal images collected during warm seasons in Novgorod Region over the past 20 years. The study provides a justification for the algorithm for mapping the sorghum yield forecast in Novgorod Region. An analysis of the spatio-temporal variability of heat supply in agricultural lands in Novgorod Region has been conducted. It is shown that an increase in heat supply to lands is expected by 2030, which will lead to an increase in sorghum yields. It is concluded that the developed technology can also be applied to other heat-loving plants.
Keywords: global warming, soils, heat-loving crops, introduction of sorghum, Novgorod Region, agroecological research, satellite thermal images, algorithm, yield forecast
Full text

References:

  1. Andreeva E. N., Balun O. V., Zhuravleva O. S., Kataeva O. A., Konechnaya G. Yu., Krupkina L. I., Yurova E. A., Kadastr flory Novgorodskoi oblasti (Flora cadastre of the Novgorod region), 2nd ed., revised and enlarged, Velikii Novgorod: Izd. “LEMA”, 2009, 276 p. (in Russian).
  2. Artemyev A. A., Tarakin I. P., Adaptive technology of sweet sorghum (Sorghum Moench.) cultivation in the Republic of Mordovia, Agrarnaya nauka Evro-Severo-Vostoka, 2016, No. 5 (54), pp. 36–41 (in Russian).
  3. Balun O. V., Shkodina E. P., The influence of agrometeorological factors on the duration of vegetation and the yield of the green mass of the Sudanese grass Zemlyachka line, Agrarian science, 2024, No. 5, pp. 85–90 (in Russian), https://doi.org/10.32634/0869-8155-2024-382-5-85-90.
  4. Gornyy V. I., Distribution of convective heat flow in the White Sea region according to remote geothermal method data, In: Prirodnaya sreda Solovetskogo arkhipelaga v usloviyakh menyayushchegosya klimata (Natural environment of the Solovetsky Archipelago in conditions of changing climate), Yu. G. Shvartsman, I. N. Bolotov (eds.), Ekaterinburg: Ural’skoe otdelenie RAN, 2007, pp. 26–29 (in Russian).
  5. Gornyy V. I., Teplyakova T. E., On the influence of the Earth’s endogenous heat on the formation of local areas of nemoral vegetation in the boreal zone, Doklady akademii nauk, 2001, V. 378, No. 5, pp. 679–680 (in Russian).
  6. Gornyy V. I., Shilin B. V., Yasinsky G. I., Teplovaya aehrokosmicheskaya sʺemka (Thermal aerospace survey), Moscow: Nedra, 1993, 128 p. (in Russian).
  7. Gornyy V. I., Latypov I. S., Teplyakova T. E., Voyakina E. Y., Verification of remote geothermal method results at the Big Solovetskii Island while investigation of reasons of extrazonal ecosystem formation, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2009, Iss. 6, V. 2, pp. 36–45 (in Russian).
  8. Gornyy V. I., Seleznev G. A., Tronin A. A., Application of thermal space photography for searching for weakly thermal waters, Prospect and Protection of Mineral resources, 2016, No. 1, pp. 49–57 (in Russian).
  9. Gornyy V. I., Kiselev A. V., Kritsuk S. G. et al., Satellite mapping of the thermal response of ecosystems of Northern Eurasia to climate change, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, V. 18, No. 6, pp. 155–164 (in Russian), DOI: 10.21046/2070-7401-2021-18-6-155-164.
  10. Gulidova V. A., Guseva Yu. S., Sweet sorghum — an alternative to corn, Bull. Kursk State Agricultural Academy, 2020, No. 3, pp. 15–20 (in Russian).
  11. Kuzminov S. A., Volodin A. B., Sorghum for cultivation for green fodder and silage, Novosti nauki v APK, 2018, No. 2-2 (11), P. 192–196 (in Russian), DOI: 10.25930/zm8a-k404.
  12. Matveev L. T., Osnovy obshchei meteorologii. Fizika atmosfery (Fundamentals of General Meteorology. Physics of the Atmosphere), Leningrad: Gidrometeoizdat, 1984, 752 p. (in Russian).
  13. Muslimov M. G., Taymazova N. S., Ramazanova T. V., Kamilova E. S., Sorghum crops — a source of alternative feed in the conditions of the Republic of Dagestan, Izvestiya Dagestanskogo GAU, 2019, No. 1, pp. 167–168 (in Russian).
  14. Polyakova E. V., Application of Earth remote sensing methods in the study of arctic thermal ecosystems (using the Pymvashor tract as an example), Current Problems of Humanities and Natural Sciences, 2011, No. 5, V. 28, pp. 279–282 (in Russian).
  15. Polyakova E. V., Gofarov M. Yu., Application of aerial photography from an unmanned aerial vehicle in the preparation of a digital terrain model (using the subarctic thermal tract Pymvashor as an example), Izvestiya Komi nauchnogo tsentra Ural’skogo otdeleniya RAN, 2012, Iss. 3(11), pp. 52–56 (in Russian).
  16. Popov S. Yu., History of the development of vegetation in Europe over the past 150,000 years, Biologiya, 2000, No. 36 (571), pp. 11–20 (in Russian).
  17. Smirnov I. A., Novgorod oak groves at the beginning of the 21st century — state and prospects, Lesnoe khozyaistvo: materialy 86-i Nauchno-tekhnicheskoi konferentsii professorsko-prepodavatel’skogo sostava, nauchnykh sotrudnikov i aspirantov (Forestry: materials of the 86th scientific and technical conference of faculty, researchers and postgraduate students), Minsk: BSTU, 2022, pp. 306–308 (in Russian).
  18. Torikov V. E., Belchenko S. A., Dronov A. V., D’yachenko V. V., Lantsev V. V., Corn and sorghum in intensive farming of the southwest of the Central region of Russia, Bryansk: Publ. house of Bryansk State Agrarian Univ., 2018, 209 p. (in Russian).
  19. Chudnovsky A. F., Teplofizika pochv (Thermal physics of soils), Moscow: Nauka, 1976, 353 p. (in Russian).
  20. Shkodina E. P., Balun O. V., Agro-ecological tests of annual fodder crops unconventional for the Novgorod region to strengthen the forage base in the Non-Chernozem zone, Agrarian science, 2023, No. 1, pp. 56–60 (in Russian), https://doi.org/10.32634/0869-8155-2023-366-1-56-60.
  21. Gornyy V., Balun O., Kiselev A., Kritsuk S., Latypov I., Tronin A. (2023a), Signs of a significant endogenous component in the thermal regime of soils on agricultural lands of the Novgorod region, In: Agriculture Digitalization and Organic Production. Proc. 3 rd Intern. Conf. “Agriculture Digitalization and Organic Production (ADOP 2023), Smart Innovation, Systems and Technologies, V. 362, Singapore: Springer, 2023, pp. 339–348.
  22. Gornyy V. I., Balun O. V., Kiselev A. V. et al. (2023b), Multiyear variations of soil moisture availability in the East European Plain, Geography, Environment, Sustainability, 2023, V. 16, No. 4, pp. 120–124, https://DOI-10.24057/2071-9388-2023-2811.
  23. Hajjarpoor A., Eltigani A., Seiler C., Matros A., Kottmann L., Balko C., Windpassinger S., Goldbach J., Eder J., Rahman A. S., Quade M., Jorzig C., Perovic D., Stahl A., Feike T., Germany-wide suitability analysis of sorghum cultivation for climate change mitigation, 64. Tagung der Gesellschaft für Pflanzenbauwissenschaften e. V.: Digital tools, big data, modeling and sensing methods for sustainable and climate smart crop and grassland systems, Göttingen, Deutschland: Liddy Halm, 2023, pp. 95–96.
  24. Hajjarpoor A., Hafezi F., Shawon A. R., Seiler C., Eltigani A., Goldbach J., Sabboura D., Kottmann L., Feike T., Spatiotemporal suitability analysis of sorghum in Germany under climate change, 18 th Congress of the European Society for Agronomy “Synergies for a resilient future: from knowledge to action”: Book of Abstr., ESA, 2024, pp. 266–273.
  25. Rapp D., Ice ages and interglacials: Measurements, interpretation, and models, Berlin; Heidelberg: Springer-Verlag, 2012, 432 p., https://doi.org/10.1007/978-3-642-30029-5.
  26. Sauer A. M., Loftus S., Schneider E. M. et al., Sorghum landraces perform better than a commonly used cultivar under terminal drought, especially on sandy soil, Plant Stress, 2024, V. 13, Article 100549, https://doi.org/10.1016/j.stress.2024.100549.
  27. Schaffasz A., Windpassinger S., Friedt W. et al., Sorghum as a novel crop for Central Europe: Using a broad diversity set to dissect temperate-adaptation, Agronomy, 2019, V. 9, No. 9, Article 535, https://doi.org/10.3390/agronomy9090535.
  28. Wan Z., Hook S., Hulley G. (2021a), MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1km SIN Grid V061, NASA EOSDIS Land Processes Distributed Active Archive Center, 2021, https://doi.org/10.5067/MODIS/MOD11A1.061.
  29. Wan Z., Hook S., Hulley G. (2021b), MODIS/Aqua Land Surface Temperature/Emissivity Daily L3 Global 1km SIN Grid V061, NASA EOSDIS Land Processes Distributed Active Archive Center, 2021, https://doi.org/10.5067/MODIS/MYD11A1.061.