ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 3, pp. 193-206

Summer warming effects on changes in spectral characteristics of natural zone surfaces in Russia

T.B. Titkova 1 , A.N. Zolotokrylin 1 
1 Institute of Geography RAS, Moscow, Russia
Accepted: 23.04.2025
DOI: 10.21046/2070-7401-2025-22-3-193-206
Changes in surface spectral characteristics are examined on the basis of MODIS (Moderate Resolution Imaging Spectroradiometer) data, particularly vegetation index, albedo and surface temperature, and their relationships in the subboreal, boreal and subarctic zones in identified areas of maximum summer air temperature increase across Russia. Possible changes in natural zones under climate warming are closely linked to mechanisms regulating the underlying surface temperature (radiation and evapotranspiration). Observational data reveal that temperature changes between 1991–2020 and 1961–1990 are heterogeneous during the summer season and affect numerous natural zones in Russia. Warming is most pronounced in June across most of Asian Russia with a peak in the subarctic zone, in July it manifests primarily in southern Central Siberia (Baikal and Trans-Baikal regions), and in August in the subboreal zone of southern European Russia. In areas of maximum summer air temperature increase, territories with radiation type of surface temperature regulation, characterized by poorly developed or absent vegetation cover, were identified and their trends were calculated. It is shown that in the subboreal zone of the south of European Russia, climate warming, against the background of vegetation degradation, maintains and may increase areas with radiation type of surface temperature regulation, creating new seasonal desertification hotspots. It was found that in the boreal zone, in the south of Central Siberia, with the predominance of evapotranspiration type of surface temperature regulation, temperature rise and unfavorable natural conditions can support in a mosaic way the radiation type of surface temperature regulation. It has been revealed that an increase in temperature in the subarctic zone can lead to a reduction in the area with a radiation type of surface temperature regulation as a result of the growth of phytomass (north of Central Siberia). Thus, an increase in air temperature can lead to the spread of territories with radiation type of surface temperature regulation in the subboreal natural zone, and support areas with radiation type of surface temperature regulation in the boreal and subarctic zones, which is determined by the relief and local natural and climatic conditions.
Keywords: temperature, spectral characteristics, vegetation index, albedo, surface temperature, natural zones, southern European Russia, southern Central Siberia, northern Central Siberia, Chukotka
Full text

References:

  1. Bartalev S. A., Stytsenko F. V., Egorov V. A., Loupian E. A., Satellite-based assessment of Russian forest fire mortality, Lesovedenie, 2015, No. 2, pp. 83–94 (in Russian).
  2. Vinogradova V. V., Titkova T. B., Climatic prerequisites for changes of zonal and subzonal landscape boundaries in European Russia and Western Siberia, Izvestiya Rossiiskoi akademii nauk. Ser. geograficheskaya, 2024, V. 88, No. 3, pp. 281–295 (in Russian), DOI: 10.31857/S2587556624030027.
  3. Eliseev A. V., Vasilyeva A. V., Wildfires: Observational data and modeling, Fundamental’naya i prikladnaya klimatologiya, 2020, V. 3, pp. 73–119 (in Russian), DOI: 10.21513/2410-8758-2020-3-73-119.
  4. Zolotokrylin A. N., Klimaticheskoe opustynivanie (Climatic desertification), A. N. Krenke (ed.), Moscow: Nauka, 2003, 246 p. (in Russian).
  5. Zolotokrylin A. N., Titkova T. B., A new approach to monitoring desertification hotspots, Arid Ecosystems, 2011, V. 17, No. 3 (48), pp. 14–22 (in Russian).
  6. Konyaev K. V., Zolotokrylin A. N., Vinogradova V. V., Titkova T. B., Determination of the response of vegetation cover to anomalies of climatic indicators using satellite data, Issledovanie Zemli iz kosmosa, 2003, No. 2, pp. 18–26 (in Russian).
  7. Konyaev K. V., Zolotokrylin A. N., Vinogradova V. V., Titkova T. B., Dependence of vegetation productivity on radiation balance and latent heat flux in Northern Eurasia, Issledovanie Zemli iz kosmosa, 2005, V. 2, pp. 13–19 (in Russian).
  8. Mokhov I. I., Semenov V. A., Weather and climate anomalies in Russian regions related to global climate change, Russian Meteorology and Hydrology, 2016, V. 41, No. 2, pp. 84–92, DOI: 10.3103/S1068373916020023.
  9. Landscape map (M 1:15 000 000), Natsional’nyi atlas Rossii. T. 2. “Priroda. Ekologiya” (National atlas of Russia. V. 2. Nature. Ecology), Moscow: Kartografiya, 2007, pp. 398–399 (in Russian), https://nationalatlas.ru/ tom2/398-399.html.
  10. Semenov V. A., Aleshina M. A., Assessment of direct radiative forcing impact on surface air temperature changes in the modern period, Doklady Earth Sciences, 2021, V. 497, No. 2, pp. 314–318, DOI: 10.1134/S1028334X21040152.
  11. Teplovodoobmen v merzlotnykh landshaftakh Vostochnoi Sibiri i ego faktory (Heat and water exchange in the permafrost landscapes of Eastern Siberia and its factors), A. G. Georgeadi, A. N. Zolotokrylin (eds.), Moscow, Tver’: Izd. “Triada”, 2007, 576 p. (in Russian).
  12. Titkova T. B., Vinogradova V. V., The response of vegetation to climate change in boreal and subarctic landscapes at the beginning of XXI century, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, V. 12, No. 3, pp. 75–86 (in Russian).
  13. Titkova T. B., Zolotokrylin A. N., Regional unevenness of the summer warming in the continental Arctic as an indicator of natural boundaries of northern landscapes, Arktika: ehkologiya i ehkonomika, 2021, V. 11, No. 3, pp. 386–396 (in Russian), DOI: 10.25283/2223-4594-2021-3-386-396.
  14. Titkova T. B., Zolotokrylin A. N., Monitoring of lands affected by desertification in the Republic of Kalmykia, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, V. 19, No. 2, pp. 130–141 (in Russian), DOI: 10.21046/2070-7401-2022-19-2-130-141.
  15. Titkova T. B., Zolotokrylin A. N., The spatial heterogeneity of the summer turbulent heat exchange on the plains of Russia, Fundamental’naya i prikladnaya klimatologiya, 2023, No. 4, pp. 467–481 (in Russian), DOI: 10.21513/2410-8758-2023-4-467-481.
  16. Titkova T. B., Zolotokrylin A. N., Vinogradova V. V., The spectral portrait of plain landscapes in Russia, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, V. 17, No. 3, pp. 117–126 (in Russian), DOI: 10.21046/2070-7401-2020-17-3-117-126.
  17. Tishkov A. A., Belonovskaya E. A., Weisfel’d M. A. et al., Regional biogeographical effects of “fast” climate changes in the Russian Arctic in the 21st century, Arktika: ehkologiya i ehkonomika, 2020, No. 2 (38), pp. 31–44 (in Russian), DOI: 10.25283/2223-4594-2020-2-31-44.
  18. Tretii otsenochnyi doklad ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii (Third assessment report on climate change and its consequences on the territory of the Russian Federation), V. M. Kattsov (ed.), Roshydromet, Saint Petersburg: Naukoemkie tekhnologii, 2022, 676 p. (in Russian).
  19. Beguería S, Vicente-Serrano S. M., Reig F., Latorre B., Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring, Intern. J. Climatology, 2014, V. 34, No. 10, pp. 3001–3023, https://doi.org/10.1002/joc.3887.
  20. Bouwer L. M., Observed and projected impacts from extreme weather events: Implications for loss and damage, In: Loss and Damage from Climate Change. Concepts, Methods and Policy Options, Cham, Switzerland: Springer, 2019, pp. 63–82, DOI: 10.1007/978-3-319-72026-5_3.
  21. Forzieri G., Alkama R., Miralles D. G., Cescatti A., Satellites reveal contrasting responses of regional climate to the widespread greening of Earth, Science, 2017, V. 356, No. 6343, pp. 1180–1184, DOI: 10.1126/science.aal1727.
  22. Hersbach H., Peubey C., Simmons A. et al., ERA-20CM: a twentieth-century atmospheric model ensemble, Quarterly J. Royal Meteorological Soc., 2015, V. 141, Iss. 691, pp. 2350–2375, DOI: 10.1002/qj.2528.
  23. IPCC, 2021: Summery for policymakers, In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge: Cambridge University Press, 2021, pp. 1–32.
  24. Kodama Y., Ishii Y., Nomura M., Sato N., Yabuki H., Ohata T., Seasonal energy exchange over tundra region near Tiksi, Eastern Siberia, Activity Report of GAME-Siberia, 2000, pp. 13–14.
  25. La Sorte F. A., Johnstone A., Ault T. R., Global trends in the frequency and duration of temperature extremes, Climatic Changes, 2021, V. 166, Article 1, DOI: 10.1007/s10584-021-03094-0.
  26. Wu M., Schurgers G., Rummukainen M. et al., Vegetation-climate feedbacks modulate rainfall patterns in Africa under future climate change, Earth System Dynamics, 2016, V. 7, No. 3, pp. 627–647, https://doi.org/10.5194/esd-7-627-2016.