Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, V. 22, No. 3, pp. 9-30
Validation of national and global satellite-derived burned area products in Russia
A.M. Matveev
1 , S.A. Bartalev
1 , V.A. Egorov
1 , I.A. Saigin
1 , F.V. Stytsenko
1 , S.S. Shinkarenko
1 1 Space Research Institute RAS, Moscow, Russia
Accepted: 15.05.2025
DOI: 10.21046/2070-7401-2025-22-3-9-30
The paper presents spatial accuracy assessment of SRBA (Surface Reflectance Burnt Area), a national product developed at Space Research Institute RAS, CGLS Burned Area 300m 3.1 NTC (CGLS BA 3.1), FireCCI51, FireCCIS311, GABAM, MCD64A1 C6, and VNP64A1 C2 global remote sensing burned area products for the territory of Russia. Validation datasets used in this study (with spatial resolution 10–30 m) span over the territory of Russia and cover more than 106 km2 fire-affected area. In forests in the summer period, the considered products show high accuracy, by the F1-score or the Dice coefficient (DC), of fire-affected area mapping (DC of 0.65–0.8), with the highest result for SRBA (DC = 0.83). In the spring period, characterized by smaller area and low lethality of surface fires in Russian forests, the observed accuracy drops significantly (DC of 0.25–0.6, for SRBA DC = 0.4). In grasslands, CGLS BA 3.1, FireCCI51, and FireCCIS311 show the highest accuracy (DC of 0.55–0.7), while SRBA has the lowest result (DC = 0.33). All satellite-derived products show low accuracy in cropland burning mapping (DC < 0.3). Overall accuracy assessment shows a moderate result for SRBA (DC = 0.5) with higher accuracy for FireCCI51 and FireCCIS311 products (DC ≈ 0.6). GABAM, MCD64A1 C6, and VNP64A1 C2 omit c. 60–70 % fire-affected area. Most reviewed products tend to underestimate burned area by 20–50 %, with the exception of CGLS BA 3.1 due to its high commission error for summer-autumn forest fires.
Keywords: remote sensing, burned area, burned area accuracy assessment, validation
Full textReferences:
- Bartalev S. A., Stytsenko F. V., An assessment of the forest stands destruction by fires based on the remote sensing data on a seasonal distribution of burnt areas, Lesovedenie, 2021, No. 2, pp. 115–122 (in Russian), DOI: 10.31857/S0024114821020029.
- Bartalev S. A., Belyaev A. I., Egorov V. A., Ershov D. V., Korovin G. N., Korshunov N. A., Kotelnikov R. V., Loupian E. A., Validation of forest burnt area detection and area estimates derived from satellite remote sensing data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2005, Iss. 2, V. 2, pp. 343–353 (in Russian).
- Bartalev S. A., Egorov V. A., Efremov V. Yu., Loupian E. A., Stytsenko F. V., Flitman E. V., Integrated burnt area assessment based on combine use of multi-resolution MODIS and Landsat-TM/ETM+ satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, V. 9, No. 2, pp. 9–26 (in Russian).
- Bartalev S. A., Loupian E. A., Stytsenko F. V., Panova O. Y., Efremov V. Yu., Rapid mapping of forest burnt areas over Russia using Landsat data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, V. 11, No. 1, pp. 9–20 (in Russian).
- Bartalev S. A., Stytsenko F. V., Egorov V. A., Loupian E. A., Satellite-based assessment of Russian forest fire mortality, Lesovedenie, 2015, No. 2, pp. 83–94 (in Russian).
- Bartalev S. A., Egorov V. A., Zharko V. O., Loupian E. A., Plotnikov D. E., Khvostikov S. A., Shabanov N. V., Sputnikovoe kartografirovanie rastitel’nogo pokrova Rossii (Land cover mapping over Russia using Earth observation data), Moscow: IKI RAN, 2016, 208 p. (in Russian).
- Bondur V. G., Gordo K. A., Zima A. L., Satellite research of the effects of wildfires on the territory of Russia for various types of vegetation cover, Issledovanie Zemli iz kosmosa, 2022, No. 6, pp. 74–86 (in Russian), DOI: 10.31857/S0205961422060033.
- Loupian E. A., Lozin D. V., Balashov I. V. et al., Study of the dependence of forest fire damage degree on burning intensity based on satellite monitoring data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, V. 19, No. 3, pp. 217–232 (in Russian), DOI: 10.21046/2070-7401-2022-19-3-217-232.
- Loupian E. A., Lozin D. V., Bartalev S. A. et al., Assessment of damage to Russian forests by fires in the XXI century based on analysis of fire intensity using MODIS instrument, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, V. 21, No. 6, pp. 233–249 (in Russian), DOI: 10.21046/2070-7401-2024-21-6-233-249.
- Matveev A. M., Bartalev S. A., A comparative analysis of wildfire carbon emissions estimates in Russia according to global inventories, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, V. 21, No. 4, pp. 141–161 (in Russian), DOI: 10.21046/2070-7401-2024-21-4-141-161.
- Medvedeva M. A., Makarov D. A., Sirin A. A., Applicability of different spectral indexes based on satellite data for peat fire area estimation, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, V. 17, No. 5, pp. 157–166 (in Russian), DOI: 10.21046/2070-7401-2020-17-5-157-166.
- Ponomarev E. I., Shvetsov E. G., Satellite detection of forest fires and geoinformation methods for calibrating of the result, Issledovanie Zemli iz kosmosa, No. 1, pp. 84–91 (in Russian), DOI: 10.7868/s0205961415010054.
- Rykov D., Dubinin M., Data on burned areas MCD45: description and obtaining, https://gis-lab.info/, 11.03.2011, https://gis-lab.info/qa/mcd45.html.
- Saigin I. A., Bartalev S. A., Stytsenko F. V., Accuracy assessment of satellite-based forest fire mortality detection, Materialy 21-i Mezhdunarodnoi konferentsii “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (Proc. 21st Intern. Conf. “Current Problems in Remote Sensing of the Earth from Space”), Moscow: IKI RAS, 2023, p. 400 (in Russian), DOI: 10.21046/21DZZconf-2023a.
- Stytsenko F. V., Bartalev S. A., Egorov V. A., Loupian E. A., Post-fire forest tree mortality assessment method using MODIS satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, V. 10, No. 1, pp. 254–266 (in Russian).
- Khvostikov S. A., Bartalev S. A., An assessment of forest fires potential carbon emissions based on remote sensing and modelling data, Materialy 19-i Mezhdunarodnoi konferentsii “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (Proc. 19th Intern. Conf. “Current Problems in Remote Sensing of the Earth from Space”), Moscow: IKI RAS, 2021, p. 387 (in Russian), DOI: 10.21046/19DZZconf-2021a.
- Khvostikov S. A., Bartalev S. A., Using remote sensing data assimilation into wildfire model to evaluate fire front position, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022. V. 19, No. 5, pp. 9–18 (in Russian), DOI: 10.21046/2070-7401-2022-19-5-9-18.
- Shinkarenko S. S., Bartalev S. A., Berdengalieva A. N., Ivanov N. M., Spatio-temporal analysis of burnt area in the Lower Volga floodplain (2022a), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, V. 19, No. 1, pp. 143–157 (in Russian), DOI: 10.21046/2070-7401-2022-19-1-143-157.
- Shinkarenko S. S., Doroshenko V. V., Berdengalieva A. N. (2022b), Burned areas dynamics in zonal landscapes of the south-east of the European part of Russia, Izvestiya Rossiiskoi akademii nauk. Ser. geograficheskaya, 2022, V. 86, No. 1, pp. 122–133 (in Russian), DOI: 10.31857/S2587556622010113.
- Bondur V. G., Gordo K. A., Voronova O. S. et al., Intense wildfires in Russia over a 22-year period according to satellite data, Fire, 2023, V. 6, Iss. 3, Article 99, DOI: 10.3390/fire6030099.
- Boschetti L., Flasse S. P., Brivio P. A., Analysis of the conflict between omission and commission in low spatial resolution dichotomic thematic products: The Pareto Boundary, Remote Sensing of Environment, 2004, V. 91, Iss. 3–4, pp. 280–292, DOI: 10.1016/j.rse.2004.02.015.
- Boschetti L., Roy D. P., Hoffmann A. A., MODIS Collection 5 Burned Area product — MCD45. User’s Guide Version 2.0, 2009, 35 p.
- Boschetti L., Roy D. P., Justice C. O., International Global Burned Area Satellite Product Validation Protocol. Part I — production and standardization of validation reference data, Maryland, USA: Committee on Earth Observation Satellites, 2010, 11 p.
- Boschetti L., Roy D. P., Giglio L. et al., Global validation of the collection 6 MODIS burned area product, Remote Sensing of Environment, 2019, V. 235, Article 111490, DOI: 10.1016/j.rse.2019.111490.
- Chen Y., Hall J., van Wees D. et al., Multi-decadal trends and variability in burned area from the fifth version of the Global Fire Emissions Database (GFED5), Earth System Science Data, 2023, V. 15, Iss. 11, pp. 5227–5259, DOI: 10.5194/essd-15-5227-2023.
- Chuvieco E., Yue C., Heil A. et al., A new global burned area product for climate assessment of fire impacts, Global Ecology and Biogeography, 2016, V. 25, Iss. 5, pp. 619–629, DOI: 10.1111/geb.12440.
- Chuvieco E., Mouillot F., van der Werf G. R. et al., Historical background and current developments for mapping burned area from satellite Earth observation, Remote Sensing of Environment, 2019, V. 225, pp. 45–64, DOI: 10.1016/j.rse.2019.02.013.
- Chuvieco E., Roteta E., Sali M. et al., Building a small fire database for Sub-Saharan Africa from Sentinel-2 high-resolution images, Science of the Total Environment, 2022, V. 845, Article 157139, DOI: 10.1016/j.scitotenv.2022.157139.
- Clelland A. A., Marshall G. J., Baster R. et al., Annual and seasonal patterns of burned area products in Arctic-boreal North America and Russia for 2001–2020, Remote Sensing, 2024, V. 16, Iss. 17, Article 3306, DOI: 10.3390/rs16173306.
- Conard S. G., Ponomarev E. I., Fire in the North: The 2020 Siberian Fire Season, Intern. J. Wildland Fire, 2020, V. 29, pp. 26–32.
- Franquesa M., Lizundia-Loiola J., Stehman S. V., Chuvieco E., Using long temporal reference units to assess the spatial accuracy of global satellite-derived burned area products, Remote Sensing of Environment, 2022, V. 269, Article 112823, DOI: 10.1016/j.rse.2021.112823.
- García-Lázaro J. R., Moreno-Ruiz J. A., Riaño D., Arbelo M., Estimation of Burned Area in the Northeastern Siberian boreal forest from a Long-Term Data Record (LTDR) 1982–2015 time series, Remote Sensing, 2018, V. 10, Iss. 6, Article 940, DOI: 10.3390/rs10060940.
- Giglio L., Boschetti L., Roy D. P. et al., The Collection 6 MODIS burned area mapping algorithm and product, Remote Sensing of Environment, 2018, V. 217, pp. 72–85, DOI: 10.1016/j.rse.2018.08.005.
- Giglio L., Schroeder W., Hall J. V., Justice C. O., MODIS Collection 6 Active Fire Product User’s Guide. Revision C, NASA, 2020, 63 p.
- Giglio L., Hall J. V., Humber M., Argueta F., Boschetti L., Roy D. P., Collection 2 VIIRS Burned Area Product User’s Guide. Version 1.1, NASA, 2024, 32 p.
- Glushkov I., Zhuravleva I., McCarty J. L. et al., Spring fires in Russia: results from participatory burned area mapping with Sentinel-2 imagery, Environmental Research Letters, 2021, V. 16, Iss. 12, Article 125005, DOI: 10.1088/1748-9326/ac3287.
- Hall J. V., Loboda T. V., Giglio L., McCarty G. W., A MODIS-based burned area assessment for Russian croplands: Mapping requirements and challenges, Remote Sensing of Environment, 2016, V. 184, pp. 506–521, DOI: 10.1016/j.rse.2016.07.022.
- Hall J. V., Argueta F., Giglio L., Validation of MCD64A1 and FireCCI51 cropland burned area mapping in Ukraine, Intern. J. Applied Earth Observation and Geoinformation, 2021, V. 102, Article 102443, DOI: 10.1016/j.jag.2021.102443.
- Hawbaker T. J., Vanderhoof M. K., Schmidt G. L. et al., The Landsat Burned Area algorithm and products for the conterminous United States, Remote Sensing of Environment, 2020, V. 244, Article 111801, DOI: 10.1016/j.rse.2020.111801.
- Heil A., Pettinari M. L., ESA Climate Change Initiative — Fire_cci: D1.1 User Requirements Document (URD), Version 7.2, 2021, 66 p.
- Justice C., Belward A., Morisette J. et al., Developments in the “validation” of satellite sensor products for the study of the land surface, Intern. J. Remote Sensing, 2000, V. 21, Iss. 17, pp. 3383–3390, DOI: 10.1080/014311600750020000.
- Kharuk V. I., Ponomarev E. I., Ivanova G. A. et al., Wildfires in the Siberian taiga, Ambio, 2021, V. 50, Iss. 11, pp. 1953–1974, DOI: 10.1007/s13280-020-01490-x.
- Kolden C. A., Lutz J. A., Key C. H. et al., Mapped versus actual burned area within wildfire perimeters: Characterizing the unburned, Forest Ecology and Management, 2012, V. 286, pp. 38–47, DOI: 10.1016/j.foreco.2012.08.020.
- Kurbanov E., Vorobev O., Lezhnin S. et al., Remote sensing of forest burnt area, burn severity, and post-fire recovery: A review, Remote Sensing, 2022, V. 14, Iss. 19, Article 4714, DOI: 10.3390/rs14194714.
- Kurbanov E., Vorobev O., Lezhnin S. et al., Temporal and spatial analyses of forest burnt area in the Middle Volga region based on satellite imagery and climatic factors, Climate, 2024, V. 12, Iss. 3, Article 45, DOI: 10.3390/cli12030045.
- Liu P., Liu Y., Guo X. et al., Burned area detection and mapping using time series Sentinel-2 multispectral images, Remote Sensing of Environment, 2023, V. 296, Article 113753, DOI: 10.1016/j.rse.2023.113753.
- Lizundia-Loiola J., Otón G., Ramo R., Chuvieco E., A spatio-temporal active-fire clustering approach for global burned area mapping at 250 m from MODIS data, Remote Sensing of Environment, 2020, V. 236, Article 111493, DOI: 10.1016/j.rse.2019.111493.
- Lizundia-Loiola J., Franquesa M., Khairoun A., Chuvieco E., Global burned area mapping from Sentinel-3 Synergy and VIIRS active fires, Remote Sensing of Environment, 2022, V. 282, Article 113298, DOI: 10.1016/j.rse.2022.113298.
- Loboda T. V., Csiszar I. A., Estimating burned area from AVHRR and MODIS: Validation results and sources of error, Contemporary Earth Remote Sensing from Space, 2005, V. 2, pp. 415–421.
- Loboda T. V., Hall J. V., Chen D. et al., Arctic Boreal Annual Burned Area, Circumpolar Boreal Forest and Tundra, V2, 2002–2022, Oak Ridge, Tennessee, USA: ORNL DAAC, 2024, DOI: 10.3334/ORNLDAAC/2328.
- Long T., Zhang Z., He G. et al., 30 m resolution global annual burned area mapping based on Landsat images and Google Earth Engine, Remote Sensing, 2019, V. 11, Iss. 5, Article 489, DOI: 10.3390/rs11050489.
- Loupian E., Burtsev M., Proshin A. et al., Usage experience and capabilities of the VEGA-Science system, Remote Sensing, 2022, V. 14, Iss. 1, Article 77, DOI: 10.3390/rs14010077.
- Martín M. P., Ceccato P., Flasse S., Downey I., Fire detection and fire growth monitoring using satellite data, In: Remote Sensing of Large Wildfires in the European Mediterranean Basin, Berlin; Heidelberg: Springer, 1999, pp. 101–122, DOI: 10.1007/978-3-642-60164-4_6.
- McCarty J. L., Krylov A., Prishchepov A. V. et al., Agricultural fires in European Russia, Belarus, and Lithuania and their impact on air quality, 2002–2012, In: Land-Cover and Land-Use Changes in Eastern Europe after the Collapse of the Soviet Union in 1991, Springer Intern. Publishing, 2017, pp. 193–221, DOI: 10.1007/978-3-319-42638-9_9.
- Melchiorre A., Boschetti L., Global analysis of burned area persistence time with MODIS data, Remote Sensing, 2018, V. 10, Iss. 5, Article 750, DOI: 10.3390/rs10050750.
- Otón G., Lizundia-Loiola J., Pettinari M. L., Chuvieco E., Development of a consistent global long-term burned area product (1982–2018) based on AVHRR-LTDR data, Intern. J. Applied Earth Observation and Geoinformation, 2021, V. 103, Article 102473, DOI: 10.1016/j.jag.2021.102473.
- Padilla M., Ramo R., Copernicus Global Land operations/ “Vegetation and Energy”. “CGLOPS-1”. Burned Area Collection 300M, version 3.1. Quality assessment report, Iss. I1.10, Copernicus, 2024, 61 p.
- Padilla M., Ramo R., Sierra S., Copernicus Global Land operations. “Vegetation and Energy”. “CGLOPS-1”. Burned Area Collection 300M, version 3.1. Algorithm theoretical basis document, Iss. I2.10, Copernicus, 2024, 53 p.
- Pereira J. M. C., Sa A. C. L., Sousa A. M. O. et al., Spectral characterisation and discrimination of burnt areas, In: Remote Sensing of Large Wildfires in the European Mediterranean Basin, Berlin; Heidelberg: Springer, 1999, pp. 123–138, DOI: 10.1007/978-3-642-60164-4_7.
- Ponomarev E. I., Zabrodin A. N., Shvetsov E. G., Ponomareva T. V., Wildfire intensity and fire emissions in Siberia, Fire, 2023, V. 6, Iss. 7, Article 246, DOI: 10.3390/fire6070246.
- Rogers B. M., Soja A. J., Goulden M. L., Randerson J. T., Influence of tree species on continental differences in boreal fires and climate feedbacks, Nature Geoscience, 2015, V. 8, Iss. 3, pp. 228–234, DOI: 10.1038/ngeo2352.
- Roy D. P., Lewis P. E., Justice C. O., Burned area mapping using multi-temporal moderate spatial resolution data — a bi-directional reflectance model-based expectation approach, Remote Sensing of Environment, 2002, V. 83, Iss. 1–2, pp. 263–286, DOI: 10.1016/S0034-4257(02)00077-9.
- Santoro M., Kirches G., Wevers J., Boettcher M., Brockmann C., Lamarche C., Defourny P., Land Cover CCI — Product User Guide. Version 1.1, UCL-Geomatics, Belgium, 2017, 52 p.
- Schroeder W., Giglio L., Hall J., Collection 2 Visible Infrared Imaging Radiometer Suite (VIIRS) 375-m Active Fire Product User’s Guide. Version 1.0, NASA, 2024, 17 p.
- Shinkarenko S. S., Berdengalieva A. N., Doroshenko V. V., Naichuk Ya. A., An analysis of the dynamics of areas affected by steppe fires in Western Kazakhstan on the basis of Earth remote sensing data, Arid Ecosystems, 2023, V. 13, Iss. 1, pp. 29–38, DOI: 10.1134/S2079096123010122.
- Shvidenko A., Schepaschenko D., Sukhinin A., McCallum I., Maksyutov S., Carbon emissions from forest fires in boreal Eurasia between 1998–2010, Proc. 5 th Intern. Wildland Fire Conf., 2011, 11 p.
- Soja A., Stocks B., Cahoon D. R., Jr., Potter S., Rogers B., Jurko N., Conard S., Gargulinski E., de Groot W., ‘Bill’. New Product! Historic AVHRR-derived Burned Area product and validation for Siberia (1979–2000), American Geophysical Union, Fall Meeting 2019, 2019, Article GC24C-07, 17 p.
- Sparks A. M., Boschetti L., Smith A. M. S. et al., An accuracy assessment of the MTBS burned area product for shrub–steppe fires in the northern Great Basin, United States, Intern. J. Wildland Fire, 2015, V. 24, pp. 70–78, DOI: 10.1071/WF14131.
- Stroppiana D., Sali M., Busetto L. et al., Sentinel-2 sampling design and reference fire perimeters to assess accuracy of Burned Area products over Sub-Saharan Africa for the year 2019, ISPRS J. Photogrammetry and Remote Sensing, 2022, V. 191, pp. 223–234, DOI: 10.1016/j.isprsjprs.2022.07.015.
- Talucci A. C., Loranty M. M., Alexander H. D., Siberian taiga and tundra fire regimes from 2001–2020, Environmental Research Letters, 2022, V. 17, Iss. 2, Article 025001, DOI: 10.1088/1748-9326/ac3f07.
- Tansey K. J., Binaghi E., Boschetti L., Brivio P. A., Cabral A., Ershov D., Flasse S., Fraser R., Gallo I., Graetz D., Grégoire J.-M., Maggi M., Peduzzi P., Pereira J. M., Sà A., Silva J., Sousa A., Stroppiana D., Vasconcelos M. J. P., Implementation of Regional Burnt Area Algorithms for the GBA2000 Initiative, European Communities, 2002, 169 p.
- The 2022 GCOS ECVs Requirements, World Meteorological Organization (WMO), Geneva, Switzerland, 2022, 261 p., https://oceanrep.geomar.de/id/eprint/57694/1/GCOS-245_2022_GCOS_ECVs_Requirements.pdf.
- van der Werf G. R., Randerson J. T., Giglio L. et al., Global fire emissions estimates during 1997–2016, Earth System Science Data, 2017, V. 9, Iss. 2, pp. 697–720, DOI: 10.5194/essd-9-697-2017.
- Vivchar A. V., Moiseenko K. B., Pankratova N. V., Estimates of carbon monoxide emissions from wildfires in Northern Eurasia for air quality assessment and climate modeling, Izvestiya, Atmospheric Oceanic Physics, 2010, V. 46, Iss. 3, pp. 281–293, DOI: 10.1134/S0001433810030023.
- Wooster M. J., Zhang Y. H., Boreal forest fires burn less intensely in Russia than in North America, Geophysical Research Letters, 2004, V. 31, Iss. 20, Article L20505, DOI: 10.1029/2004GL020805.
- Wooster M. J., Roberts G. J., Giglio L. et al., Satellite remote sensing of active fires: History and current status, applications and future requirements, Remote Sensing of Environment, 2021, V. 267, Article 112694, DOI: 10.1016/j.rse.2021.112694.
- Zhu C., Kobayashi H., Kanaya Y., Saito M., Size-dependent validation of MODIS MCD64A1 burned area over six vegetation types in boreal Eurasia: Large underestimation in croplands, Scientific Reports, 2017, V. 7, Iss. 1, Article 4181, DOI: 10.1038/s41598-017-03739-0.