ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, Vol. 22, No. 2, pp. 217-232

Features of quasi-specular reflection of microwave radio waves by sea ice according to bistatic remote sensing data in the L-band

D.A. Kovaldov 1 , Yu.A. Titchenko 1 , V.Yu. Karaev 1 , M.A. Panfilova 1 
1 Institute of Applied Physics RAS, Nizhny Novgorod, Russia
Accepted: 03.02.2025
DOI: 10.21046/2070-7401-2025-22-2-217-232
The construction of an empirical model of the first-year sea ice scattering pattern in the L-band using a bistatic sensing scheme is discussed. The TDS-1 satellite (TechDemoSat-1), which was in low Earth orbit, was used as a receiver of the Global Navigation Satellite System (GNSS) signal reflected by the ice cover. The bistatic sensing method based on the use of the reflected GNSS signal is also called GNSS-Reflectometry (GNSS-R). To determine the scattering pattern of ice cover, an algorithm using Doppler spectrum (DS) of the reflected signal is employed. DS of the reflected signal in the GNSS-R scheme is formed due to the “spread” of the projection value of the receiver’s movement velocity caused by the dispersion of the slopes of the reflecting surface. For high-orbit satellites, it can be assumed that the incident GNSS radiation in the reflection region has a flat front; therefore, only the central frequency of DS shift depends on the transmitter velocity. The width of DS depends on the receiver speed and the dispersion of the reflecting surface slopes. The Sea of Okhotsk was chosen as a test area from February to March 2017. During this time interval, a stable ice cover was present north of Sakhalin Island at subzero air temperatures. Ice cover parameters were determined using ice concentration maps reconstructed from Advanced Microwave Scanning Radiometer 2 (AMSR2) data. Ice cover maps indicating thickness and type of sea ice (nilas, gray ice, young ice, etc.) provided by Planeta Research Center were also used as well as images of Moderate Resolution Imaging Spectroradiometer (MODIS) installed on the Aqua satellite (EOS PM-1). The data array for the period under consideration was processed and the scattering diagram of sea ice in the L-band was compared with the scattering diagrams in the Ku- and Ka-bands constructed using the data of the Dual-frequency Precipitation Radar (DPR) installed on the Global Precipitation Measurement (GPM) satellite. The results obtained showed that the width of the scattering diagram for sea ice in the L-band is wider than in the Ku- and Ka-bands.
Keywords: GNSS, Sea of Okhotsk, quasi-specular reflection, L-band, scatter pattern, sea ice remote sensing, TDS-1
Full text

References:

  1. Bass F. G., Fuks I. M., Rasseyanie voln na statisticheski nerovnoi poverkhnosti (Waves scattering on a statistically rough surface), Moscow: Nauka, 1972, 424 p. (in Russian).
  2. Boev A. G., Efimov V. B., Tsymbal V. N., Radiolokatsionnye metody i sredstva operativnogo distantsionnogo zondirovaniya Zemli s aehrokosmicheskikh nositelei (Radar methods and means of operational remote sensing of the Earth from aerospace carriers), Kyiv: LLC “Dzhuliya Print”, 2007, 440 p. (in Russian).
  3. Vagapov Z. Kh., Gavrilo V. P., Kozlov A. I., Lebedev G. A., Logvin A. I., Distantsionnye metody issledovaniya morskikh l’dov (Remote sensing methods for sea ice research), Saint Petersburg: Gidrometeoizdat, 1993, 343 p. (in Russian).
  4. Danilychev M. V., Kutuza B. G., Moshkov A. V. et al., The application of L-band in satellite microwave radiometry of the sea surface, Physical Bases of Instrumentation, 2018, V. 7, No. 1(27), pp. 46–53 (in Russian), DOI: 10.25210/jfop-1801-046053.
  5. Ishimaru A., Wave propagation and scattering in random media, V. 2, New York, San Francisco, London: Academic Press, 1978, 339 p.
  6. Karaev V. Yu., Panfilova M. A., Mitnik L. M. et al., Backscattering of microwave radar signal by first year sea ice at small incidence angles, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, V. 18, No. 3, pp. 229–241 (in Russian), DOI: 10.21046/2070-7401-2021-18-3-229-241.
  7. Karaev V. Yu., Titchenko Yu. A., Panfilova M. A. et al., Doppler spectra of a microwave signal measured during movement over ice cover and sea waves: Comparison of models and determination of the kind of scattering surface, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, V. 19, No. 3, pp. 247–258 (in Russian), DOI: 10.21046/2070-7401-2022-19-3-247-258.
  8. Kovaldov D. A., Titchenko Yu. A., Karaev V. Yu. et al., On the issue of determining the scattering diagram of ice cover using bistatic remote sensing data in the L-band, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2024, V. 21, No. 6, pp. 294–308 (in Russian), DOI: 10.21046/2070-7401-2024-21-6-294-308.
  9. Lebedev G. A., Sukhorukov K. K., Rasprostranenie ehlektromagnitnykh i akusticheskikh voln v morskom l’du (Propagation of electromagnetic and acoustic waves in sea ice), Saint Petersburg: Gidrometeoizdat, 2001, 81 p. (in Russian).
  10. Mitnik L. M., Viktorov S. V., Radiolokatsiya poverkhnosti Zemli iz kosmosa (Radar location of the Earth’s surface from space), Saint Petersburg: Gidrometeoizdat, 1990, 200 p. (in Russian).
  11. Smirnov V. G., Sputnikovye metody opredeleniya kharakteristik ledyanogo pokrova morei: prakticheskoe posobie (Satellite methods for determining sea ice cover characteristics: practical manual), Saint Petersburg: AANII, 2011, 240 p. (in Russian).
  12. Fil’chuk K. V., Kovalev S. M., Guzenko R. B., Khotchenkov S. V., Pavlov A. N., Panov L. V., Gavrilov Yu. G., Buinov R. P., Ice research in the expedition “North Pole-41”, Rossiiskie polyarnye issledovaniya, 2023, V. 53, No. 3, pp. 19–28 (in Russian).
  13. Dadjoo M., Mayvan M. Z., Isleifson D., Experimental observations of forming sea ice using surface-based L-, C-, and Ku-band polarimetric scatterometers, IGARSS 2024 — 2024 IEEE Intern. Geoscience and Remote Sensing Symp., 2024, pp. 76–79, DOI: 10.1109/IGARSS53475.2024.10640527.
  14. Du Y., Yang X., Chen K.-S. et al., An improved spectrum model for sea surface radar backscattering at L-band, Remote Sensing, 2017, V. 9, No. 8, Article 776, DOI: 10.3390/rs9080776.
  15. Elfouhaily T. M., Guérin C. A., A critical survey of approximate scattering wave theories from random rough surfaces, Waves in Random Media, 2004, V. 14, No. 4, pp. R1–R40, DOI: 10.1088/0959-7174/14/4/R01.
  16. Elfouhaily T., Chapron B., Katsaros K., Vandemark D., A unified directional spectrum for long and short wind‐driven waves, J. Geophysical Research: Oceans, 1997, V. 102, No. C7, pp. 15781–15796, DOI: 10.1029/97JC00467.
  17. Freilich M. H., Vanhoff B. A., The relationship between winds, surface roughness, and radar backscatter at low incidence angles from TRMM precipitation radar measurements, J. Atmospheric and Oceanic Technology, 2003, V. 20, No. 4, pp. 549–562.
  18. Geldsetzer T., Howell S. E. L., Incidence angle dependencies for C-band backscatter from sea ice during both the winter and melt season, IEEE Trans. Geoscience and Remote Sensing, 2023, V. 61, pp. 1–15.
  19. Golden K. M., Cheney M., Ding K., Fung A. K., Grenfell T. C., Isaacson D., Kong J., Nghiem S., Sylvester J., Winebrenner D., Forward electromagnetic scattering models for sea ice, IEEE Trans. Geoscience and Remote Sensing, 1998, V. 36, No. 5, pp. 1655–1674.
  20. GPM Data Utilization Handbook, 1st ed., JAXA, Japan, 2014, 92 p.
  21. Hallikainen M., Winebrenner D. P., The physical basis for sea ice remote sensing, In: Microwave Remote Sensing of Sea Ice, Carsey F. D. (ed.), V. 68, USA: American Geophysical Union, 1992, pp. 29–46, DOI: 10.1029/GM068p0029.
  22. Hauser D., Tison C., Amiot T., Delaye L., Corcoral N., Castillan P., SWIM: The first spaceborne wave scatterometer, IEEE Trans. Geoscience and Remote Sensing, 2017, V. 55, No. 5, pp. 3000–3014.
  23. Hwang P. A., Fois F., Surface roughness and breaking wave properties retrieved from polarimetric microwave radar backscattering, J. Geophysical Research: Oceans, 2015, V. 120, No. 5, pp. 3640–3657, DOI: 10.1002/2015JC010782.
  24. Karaev V., Titchenko Y., Panfilova M., Meshkov E., The Doppler spectrum of the microwave radar signal backscattered from the sea surface in terms of the modified Bragg scattering model, IEEE Trans. Geoscience and Remote Sensing, 2020, V. 58, No. 1, pp. 193–202.
  25. Karaev V., Titchenko Y., Panfilova M. et al., Application of the Doppler spectrum of the backscattering microwave signal for monitoring of ice cover: A theoretical view, Remote Sensing, 2022, V. 14, No. 10, Article 2331, DOI: 10.3390/rs14102331.
  26. Kintner P. M., Ledvina B. M., de Paula E. R., GPS and ionospheric scintillations, Space Weather, 2007, V. 5, No. 9, Article 3, DOI: 10.1029/2006SW000260.
  27. Komarov A. S., Buehner M., Detection of first-year and multi-year sea ice from dual-polarization SAR images under cold conditions, IEEE Trans. Geoscience and Remote Sensing, 2019, V. 57, No. 11, pp. 9109–9123.
  28. Komarov A. S., Isleifson D., Barber D. G., Shafai L., Modeling and measurement of C-band radar backscatter from snow-covered first-year sea ice, IEEE Trans. Geoscience and Remote Sensing, 2015, V. 53, No. 7, pp. 4063–4078.
  29. Kudryavtsev V. N., Makin V. K., Chapron B., Coupled sea surface‐atmosphere model: 2. Spectrum of short wind waves, J. Geophysical Research: Oceans, 1999, V. 104, No. C4, pp. 7625–7639, DOI: 10.1029/1999JC900005.
  30. Liu M., Dai Y., Zhang J. et al., The microwave scattering characteristics of sea ice in the Bohai Sea, Acta Oceanologica Sinica, 2016, V. 35, No. 5, pp. 89–98, DOI: 10.1007/s13131-016-0861-6.
  31. Mahmud M. S., Geldsetzer T., Howell S. E. L., Yackel J. J., Nandan V., Scharien R. K., Incidence angle dependence of HH-polarized C- and L-band wintertime backscatter over arctic sea ice, IEEE Trans. Geoscience and Remote Sensing, 2018, V. 56, No. 11, pp. 6686–6698.
  32. Melsheimer C., Spreen G., AMSR-2 ASI sea ice concentration data, Antarctic, version 5.4 (NetCDF) (July 2012 – December 2018), PANGAEA, 2019, DOI: 10.1594/PANGAEA.898400.
  33. Mitnik L. M., Kalmykov A. I., Structure and dynamics of the Sea of Okhotsk marginal ice zone from “Ocean” satellite radar sensing data, J. Geophysical Research: Oceans, 1992, V. 97, No. C5, pp. 7429–7445.
  34. Onstott R. G., SAR and scatterometer signatures of sea ice, In: Microwave Remote Sensing of Sea Ice, Carsey F. D. (ed.), V. 68, USA: American Geophysical Union, 1992, pp. 73–104, DOI: 10.1029/GM068p0073.
  35. Ryabkova M., Karaev V., Guo J., Titchenko Y. A., Review of wave spectrum models as applied to the problem of radar probing of the sea surface, J. Geophysical Research: Oceans, 2019, V. 124, No. 10, pp. 7104–7134.
  36. Sandven S., Spreen G., Heygster G., Girard-Ardhuin F., Farrell S. L., Dierking W., Allard R. A., Sea ice remote sensing—Recent developments in methods and climate data sets, Surveys in Geophysics, 2023, V. 44, No. 5, pp. 1653–1689.
  37. Titchenko Y., Bistatic Doppler spectrum of radiation reflected by a water surface, Russian J. Earth Sciences, 2020, V. 20, Article ES6007, DOI: 10.2205/2020ES000745.
  38. Toporkov J. V., Ouellette J. D., Johnson J. T., Impact of spectral spreading functions on modeling the sea backscatter cross section at microwave frequencies, IGARSS 2024 — 2024 IEEE Intern. Geoscience and Remote Sensing Symp., 2024, pp. 6643–6646.
  39. Valenzuela G., Theories for interaction of electromagnetic and oceanic waves: A review, Boundary Layer Meteorology, 1978, V. 13, pp. 61–86.
  40. Voronovich A. G., Small slope approximation for electromagnetic wave scattering at a rough interface of two dielectric half spaces, Waves in Random Media, 1994, V. 4, pp. 337–367.
  41. Voronovich A. G., Zavorotny V. U., Theoretical model for scattering of radar signals in Ku- and C-bands from a rough sea surface with breaking waves, Waves in Random Media, 2001, V. 11, pp. 247–269.
  42. Winebrenner D. P., Bredow J., Fung A. K. et al., Microwave sea ice signature modeling, In: Microwave Remote Sensing of Sea Ice, Carsey F. D. (ed.), V. 68, USA: American Geophysical Union, 1992, pp. 137–175, DOI: 10.1029/GM068p0137.