ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, Vol. 22, No. 2, pp. 303-315

Cloud cover characteristics at nighttime at the location of the TAIGA astrophysical gamma-ray observatory according to the data of satellite-based instruments

A.I. Revyakin 1 , E.Yu. Mordvin 1 , A.A. Lagutin 1 
1 Altai State University, Barnaul, Russia
Accepted: 24.02.2025
DOI: 10.21046/2070-7401-2025-22-2-303-315
The paper proposes an approach to reconstructing in real-time regime cloud cover parameters based on the data from the AIRS (Atmospheric Infrared Sounder) hyperspectrometer onboard the Aqua satellite. The specific problem being solved is estimation of cloud boundaries in the area of the TAIGA (Tunka Advanced Instrument for cosmic rays and Gamma Astronomy) astrophysical complex. The relevance of this information is due to the need to take into account the contribution of extensive air showers, which were previously classified as “cloudy” at the data preprocessing stage, in the energy spectrum and mass composition of primary cosmic radiation reconstructed from the readings of the Cherenkov radiation detectors. The information basis of the proposed approach is data on vertical profiles of atmospheric temperature and humidity provided by the AIRS L2 Support Product. Analysis of the obtained results shows that in the area of the TAIGA observatory for the 2002–2024 observation seasons, the characteristic height of the lower boundary of the cloud layer is ~2.25 km above sea level. The thicknesses of the cloud layers range from 0.5 to 4 km. The obtained estimates are verified based on the results of a joint analysis of AIRS data with satellite measurements of the CPR (Cloud Profiling Radar)/CloudSat radar and the CALIOP/CALIPSO (Cloud-Aerosol Lidar with Orthogonal Polarization/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) lidar that were carried out in the period 2006–2011. The main result of the work is the conclusion on the possibility of using the AIRS/Aqua hyperspectrometer data, as well as equivalent data of the CrIS (Cross-Track Infrared Sounder) instrument of the JPSS (Joint Polar Satellite System) satellite constellation to obtain in real-time regime information on cloud characteristics during nighttime observations carried out by the TAIGA Cherenkov detectors.
Keywords: cloud cover, remote sensing, AIRS hyperspectrometer, TAIGA gamma-ray observatory
Full text

References:

  1. Budnev N., Kuzmichev L., Astapov I. et al., TAIGA — hybrid complex for multimessenger high-energy astronomy, Technical Physics, 2023, V. 68, No. 12, pp. 1666–1670, DOI: 10.61011/JTF.2023.12.56824.f234-23.
  2. Lagutin A. A., Nikulin Y. A., Zhukov A. P. et al. (2007a), Mathematical technologies for efficient regional satellite monitoring of the atmosphere and land surface parameters. Part 1. MODIS, Computational technologies, 2007, V. 12, No. 2, pp. 67–89 (in Russian).
  3. Lagutin A. A., Nikulin Y. A., Lagutin Al.A. et al. (2007b), Mathematical technologies for regional satellite monitoring of the atmosphere and land surface parameters operating closely to the real time regime. Part 2. AIRS, Computational technologies, 2007, V. 12, No. 5, pp. 78–102 (in Russian).
  4. Lagutin A. A., Mordvin E. Y., Volkov N. V., Reviakin A. I., Restoration of the all-weather mode of the AIRS/AMSU hyperspectral system of the AQUA satellite using the ATMS microwave radiometer of the SUOMI-NPP and NOAA-20 satellites, Optoelectronics, Instrumentation and Data Processing, 2022, V. 58, No. 2, pp. 180–187, DOI: 10.3103/S8756699022020066.
  5. Skorokhodov A. V., Kuryanovich K. V. (2022a), Using CALIOP data to estimate the cloud base height in MODIS images, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, V. 19, No. 2, pp. 43–56 (in Russian), DOI: 10.21046/2070-7401-2022-19-2-43-56.
  6. Skorokhodov A. V., Kuryanovich K. V. (2022b), Using CloudSat CPR data to improve the efficiency of the neural network approach to estimating cloud base height in Aqua MODIS satellite images, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2022, V. 19, No. 5, pp. 63–75 (in Russian), DOI: 10.21046/2070-7401-2022-19-5-63-75.
  7. Astapov I. I., Barbashina N. S., Bogdanov A. G. et al., The TAIGA-HiSCORE array prototype: Status and first results, Bull. Russian Academy of Sciences: Physics, 2017, V. 81, pp. 460–463, DOI: 10.3103/S1062873817040074.
  8. Astapov I., Bezyazeekov P., Bonvech E. et al., The TAIGA — a hybrid detector complex in Tunka valley for astroparticle physics, cosmic ray physics and gamma-ray astronomy, Physics of Atomic Nuclei, 2023, V. 86, No. 4, pp. 471–477, DOI: 10.1134/s1063778823040051.
  9. Aumann H. H., Chahine M. T., Gautier C. et al., AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems, IEEE Trans. Geoscience and Remote Sensing, 2003, V. 41, No. 2, pp. 253–264, DOI: 10.1109/TGRS.2002.808356.
  10. Budnev N. M., Chiavassa A., Gress O. A. et al., The primary cosmic-ray energy spectrum measured with the Tunka-133 array, Astroparticle Physics, 2020, V. 117, Article 102406, DOI: 10.1016/j.astropartphys.2019.102406.
  11. Chernykh I. V., Eskridge R. E., Determination of cloud amount and level from radiosonde soundings, J. Applied Meteorology and Climatology, 1996, V. 35, No. 8, pp. 1362–1369, DOI: 10.1175/1520-0450(1996)035<1362:DOCAAL>2.0.CO;2.
  12. Clough S. A., Shephard M. W., Mlawer E. J. et al., Atmospheric radiative transfer modeling: a summary of the AER codes, J. Quantitative Spectroscopy and Radiative Transfer, 2005, V. 91, No. 2, pp. 233–244, DOI: 10.1016/j.jqsrt.2004.05.058.
  13. Costa-Surós M., Calbó J., González J. A., Long C. N., Comparing the cloud vertical structure derived from several methods based on radiosonde profiles and ground-based remote sensing measurements, Atmospheric Measurement Techniques, 2014, V. 7, No. 8, pp. 2757–2772, DOI: 10.5194/amt-7-2757-2014.
  14. Fruck C., Gaug M., Hahn A. et al., Characterizing the aerosol atmosphere above the Observatorio del Roque de los Muchachos by analysing seven years of data taken with an GaAsP HPD-readout, absolutely calibrated elastic LIDAR, Monthly Notices of the Royal Astronomical Soc., 2022, V. 515, No. 3, pp. 4520–4550, DOI: 10.1093/mnras/stac1563.
  15. Goldberg M. D., Kilcoyne H., Cikanek H., Mehta A., Joint Polar Satellite System: The United States next generation civilian polar-orbiting environmental satellite system, J. Geophysical Research: Atmospheres, 2013, V. 118, No. 24, pp. 13463–13475, DOI: 10.1002/2013JD020389.
  16. Han Y., Revercomb H., Cromp M. et al., Suomi NPP CrIS measurements, sensor data record algorithm, calibration and validation activities, and record data quality, J. Geophysical Research: Atmospheres, 2013, V. 118, No. 22, pp. 12734–12748, DOI: 10.1002/2013JD020344.
  17. Hillger D., Kopp T., Lee T. et al., First-light imagery from Suomi NPP VIIRS, Bull. American Meteorological Soc., 2013, V. 94, No. 7, pp. 1019–1029, DOI: 10.1175/BAMS-D-12-00097.1.
  18. Kaufman Y. J., Herring D. D., Ranson K. J., Collatz G. J., Earth Observing System AM1 mission to Earth, IEEE Trans. Geoscience and Remote Sensing, 1998, V. 36, No. 4, pp. 1045–1055, DOI: 10.1109/36.700989.
  19. King M. D., Menzel W. P., Kaufman Y. J. et al., Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS, IEEE Trans. Geoscience and Remote Sensing, 2003, V. 41, No. 2, pp. 442–458, DOI: 10.1109/TGRS.2002.808226.
  20. Lawson R. P., Cooper W. A., Performance of some airborne thermometers in clouds, J. Atmospheric and Oceanic Technology, 1990, V. 7, No. 3, pp. 480–494, DOI: 10.1175/1520-0426(1990)007<0480:POSATI>2.0.CO;2.
  21. Lyche T., Schumaker L. L., Computation of smoothing and interpolating natural splines via local bases, SIAM J. Numerical Analysis, 1973, V. 10, No. 6, pp. 1027–1038, DOI: 10.1137/0710085.
  22. Matveev L. T., Cloud dynamics, Dordrecht: D. Reidel Publishing Company, 1984, 356 p., DOI: 10.1007/978-94-009-6360-3.
  23. Parkinson C. L., Aqua: an Earth-Observing Satellite mission to examine water and other climate variables, IEEE Trans. Geoscience and Remote Sensing, 2003, V. 41, No. 2, pp. 173–183, DOI: 10.1109/TGRS.2002.808319.
  24. Pietrowicz J. A., Schiermeier F. A., Observational evidence of systematic radiosonde temperature sensing anomalies, J. Applied Meteorology and Climatology, 1978, V. 17, No. 10, pp. 1572–1575, DOI: 10.1175/1520-0450(1978)017<1572:OEOSRT>2.0.CO;2.
  25. Poore K. D., Wang J., Rossow W. B., Cloud layer thicknesses from a combination of surface and upper-air observations, J. Climate, 1995, V. 8, No. 3, pp. 550–568, DOI: 10.1175/1520-0442(1995)008<0550:CLTFAC>2.0.CO;2.
  26. Salomonson V. V., Barnes W. L., Maymon P. W. et al., MODIS: advanced facility instrument for studies of the Earth as a system, IEEE Trans. Geoscience and Remote Sensing, 1989, V. 27, No. 2, pp. 145–153, DOI: 10.1109/36.20292.
  27. Sassen K., Wang Z., Liu D., Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements, J. Geophysical Research: Atmospheres, 2008, V. 113, No. D8, Article D00A12, DOI: 10.1029/2008JD009972.
  28. Schmuckermaier F., Gaug M., Fruck C. et al., Correcting Imaging Atmospheric Cherenkov Telescope data with atmospheric profiles obtained with an elastic light detecting and ranging system, Astronomy and Astrophysics, 2023, V. 673, Article A2, DOI: 10.1051/0004-6361/202245787.
  29. Stubenrauch C. J., Rossow W. B., Kinne S. et al., Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX Radiation Panel, Bull. American Meteorological Soc., 2013, V. 94, No. 7, pp. 1031–1049, DOI: 10.1175/BAMS-D-12-00117.1.
  30. Subrahmanyam K. V., Kumar K. K., CloudSat observations of multi layered clouds across the globe, Climate Dynamics, 2017, V. 49, pp. 327–341, DOI: 10.1007/s00382-016-3345-7.
  31. Susskind J., Blaisdell J., Iredell L. et al., AIRS-Team retrieval for core products and geophysical parameters: Versions 6 and 7. Level 2, Pasadena: Jet Propulsion Laboratory, 2020, 77 p., https://docserver.gesdisc.eosdis.nasa.gov/public/project/AIRS/L2_ATBD.pdf.
  32. Tan Z., Ma S., Liu C. et al., Retrieving cloud base height from passive radiometer observations via a systematic effective cloud water content table, Remote Sensing of Environment, 2023, V. 294, Article 113633, DOI: 10.1016/j.rse.2023.113633.
  33. Wang J., Rossow W. B., Determination of cloud vertical structure from upper-air observations, J. Applied Meteorology and Climatology, 1995, V. 34, No. 10, pp. 2243–2258, DOI: 10.1175/1520-0450(1995)034<2243:DOCVSF>2.0.CO;2.
  34. Wang J., Rossow W. B., Zhang Y., Cloud vertical structure and its variations from a 20-yr global rawinsonde dataset, J. Climate, 2000, V. 13, No. 17, pp. 3041–3056, DOI: 10.1175/1520-0442(2000)013<3041:CVSAIV>2.0.CO;2.
  35. Xu H., Guo J., Tong B. et al., Characterizing the near-global cloud vertical structures over land using high-resolution radiosonde measurements, Atmospheric Chemistry and Physics, 2023, V. 23, No. 23, pp. 15011–15038, DOI: 10.5194/acp-23-15011-2023.
  36. Zhang J., Chen H., Li Z. et al., Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud radar, J. Geophysical Research: Atmospheres, 2010, V. 115, No. D7, Article D00K30, DOI: 10.1029/2010JD014030.
  37. Zhang J., Chen H., Bian J. et al., Development of cloud detection methods using CFH, GTS1, and RS80 radiosondes, Advances in Atmospheric Sciences, 2012, V. 29, pp. 236–248, DOI: 10.1007/s00376-011-0215-4.