Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, Vol. 22, No. 2, pp. 256-266
Satellite monitoring of ice hummocky formations in the Sea of Azov in 2015–2024
1 Southern Scientific Centre RAS, Rostov-on-Don, Russia
Accepted: 13.03.2025
DOI: 10.21046/2070-7401-2025-22-2-256-266
The Sea of Azov is a shallow water area with seasonal ice cover. The physical and hydrometeorological characteristics of the Sea of Azov contribute to active ice hummocking. As a result, hummocks, ridges and grounded hummocks (stamukhas) are formed. These ice formations are dangerous to maritime shipping and marine and coastal engineering structures. Due to active marine economic activity in the Sea of Azov and regional climate changes, information on the localization of ice hummocky formations is extremely important. This article is dedicated to satellite monitoring of hummocky ice formations in the Sea of Azov in 2015–2024. For this purpose, the methodology for detecting hummocky formations developed by the Arctic and Antarctic Research Institute has been applied. According to the methodology, high-resolution (spatial resolution of 10–30 m) radar and optical satellite images, hydrometeorological data, bathymetry and historical data on the location of ice hummocky formations were used. 105 satellite images were used: radar images from Sentinel-1A SAR-C (Synthetic Aperture Radar, C-band) and visible images from Sentinel-2 MSI (Multispectral Instrument) and Landsat-8, -9 OLI (Operational Land Imager). Analysis and processing of satellite images was carried out using the VEGA-Science web GIS created at Space Research Institute of the Russian Academy of Sciences. As a result, new data on ice hummocky formations in the Sea of Azov were obtained. These are the area, transverse length and dates of formation and destruction. The location of ice hummocky formations was estimated using the bathymetry of the Sea of Azov and GIS analysis. For 2015–2024, 642 hummocky formations were discovered; the area varied from 5963 to 11 125 m2. The sea ice area of the Sea of Azov has decreased. The average sea ice area for 2015–2024 is 9.2 %. This is less than the long-term average for 1950–2024 and the climatic norm for 1991–2020. For this reason, ice hummocky formations are located mainly in the Taganrog Bay at depths of 0.5–2.5 m and are observed for an average of about 30 days. However, hummocky formations can form in the open sea and in the Kerch Strait in some winters when there is a large sea ice area (for example, winter 1953/54, 1955/56, etc.).
Keywords: ice hummocky formations, hummock, grounded hummock, sea ice, ice cover, Sea of Azov, Taganrog Bay, satellite monitoring
Full textReferences:
- Atlas l’dov Chernogo i Azovskogo morei (Atlas of the Black and Azov Seas Ice), Leningrad: Gidrometeoizdat, 1962, 120 p.
- Berdnikov C. V., Dashkevich L. V., Kulygin V. V., New state of the hydrological regime of the Sea of Azov in the 21st century, Doklady Earth Sciences, 2022, V. 503, No. 1, pp. 123–128, DOI: 10.1134/S1028334X22030059.
- Bulygina O. N., Razuvaev V. N., Trofimenko L. T., Shvets N. V., Opisanie massiva dannykh srednemesyachnoi temperatury vozdukha na stantsiyakh Rossii (Description of the data array of average monthly air temperature at stations in Russia), Certificate of state registration of the database No. 2014621485 (RU), Reg. 10.04.2014 (in Russian).
- Bukharitsin P. I., Ice ridging characteristics in the northern part of the Caspian Sea, Vodnye resursy, 1984, No. 6, pp. 115–123 (in Russian).
- Gidrometeorologicheskie usloviya shel’fovoi zony morei SSSR. T. 3. Azovskoe more (Hydrometeorological conditions of the shelf zone of seas in the USSR. V. 3. The Sea of Azov), Leningrad: Gidrometeoizdat, 1986, 218 p. (in Russian).
- Gidrometeorologicheskii spravochnik Azovskogo morya (Hydrometeorological directory of the Sea of Azov), Leningrad: Gidrometeoizdat, 1962, 853 p. (in Russian).
- Gidrometeorologiya i gidrokhimiya morei SSSR. T. 5. Azovskoe more (Hydrometeorology and hydrochemistry of the USSR seas. V. 5. The Sea of Azov), Saint Petersburg: Gidrometeoizdat, 1991, 237 p. (in Russian).
- Gorbunov Yu. A., Losev S. M., Dyment L. N., Stamukhas of the East Siberian and Chukchi Seas, Materialy glyatsiologicheskikh issledovanii, 2007, Iss. 102, pp. 41–47 (in Russian).
- Gorbunov Yu. A., Losev S. M., Dyment L. N., Stamukhas of the Laptev Sea, Problemy Arktiki i Antarktiki, 2008, No. 2(79), pp. 111–116 (in Russian).
- Dashkevich L. V., Kulygin V. V., Berdnikov S. V., Many-year variations of the average salinity of the Sea of Azov, Water Resources, 2017, V. 44, No. 5, pp. 749–757, DOI: 10.1134/S0097807817040042.
- Dumanskaya I. O., Ledovye usloviya morei evropeiskoi chasti Rossii (Ice conditions of the seas of the European part of Russia), Moscow; Obninsk: IG-SOTSIN, 2014, 608 p. (in Russian).
- D’yakov N. N., Timoshenko T. Yu., Belogudov A. A., Gorbach S. B., Atlas l’dov Chernogo i Azovskogo morei (Atlas of the Black and Azov Seas Ice), Sevastopol: Sevastopol Branch of N. N. Zubov’s State Oceanographic Institute, 2015, 219 p. (in Russian).
- D’yakov N. N., Fomin V. V., Cvecinsky A. S., Lipchenko A. E., Lukin D. V., Polozok A. A., Fomina I. N., Timoshenko T. Y., Belogudov A. A., Levickaya O. V., Sovremennye gidrometeorologicheskie usloviya formirovaniya vetro-volnovykh, ledovykh i drugikh opasnykh yavlenii v Kerchenskom prolive (Modern hydrometeorological conditions for the formation of wind-wave, ice and other dangerous phenomena in the Kerch Strait), Sevastopol: Roshydromet, Sevastopol Branch of N. N. Zubov’s State Oceanographic Institute, 2019, 365 p. (in Russian).
- Kostianoy A. G., Kostianaia E. A., Lavrova O. Yu., Strochkov A. Ya., Satellite monitoring of ice cover in the Sea of Azov in winter 2022/2023, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2023, V. 20, No. 6, pp. 276–288 (in Russian), DOI: 10.21046/2070-7401-2023-20-6-276-288.
- Lavrova O. Yu., Mityagina M. I., Kostianoy A. G., Ice conditions in the Kerch Strait in the current century: Retrospective analysis based on satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, V. 14, No. 2, pp. 148–166 (in Russian), DOI: 10.21046/2070-7401-2017-14-2-148-166.
- Loupian E. A., Lavrova O. Yu., Mityagina M. I., Kostianoy A. G., Ice conditions in the construction area of the Crimean Bridge in February 2017, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, V. 14, No. 1, pp. 247–251 (in Russian), DOI: 10.21046/2070-7401-2017-14-1-247-251.
- Magaeva A. A., Ledovyi rezhim Azovskogo i Kaspiiskogo morei: mnogoletnyaya dinamika i opasnye yavleniya: diss. … kand. geogr. nauk (Ice regime of the Azov and Caspian Seas: long-term dynamics and hazardous phenomena, Cand. geogr. sci. thesis), Rostov-on-Don, 2022, 162 p. (in Russian).
- Magaeva A. A., Tretyakova I. A., Creation of a digital elevation model of the Sea of Azov bottom, In: Ehkologiya. Ehkonomika. Informatika. Sbornik statei. V 3 t. T. 3. Geoinformatsionnye tekhnologii i kosmicheskii monitoring (Ecology. Economics. Computer science. Collection of articles. In 3 V. V. 3. Geoinformation technologies and space monitoring), Rostov-on-Don: Southern Federal University Publishers, 2015, pp. 266–269 (in Russian).
- Magaeva A. A., Yaitskaya N. A., Likhtanskaya N. V., Dashkevich L. V., Development of geoinformation system of the Russian southern seas ice conditions, In: Ehkologiya. Ehkonomika. Informatika. Sbornik statei. V 3 t. T. 3. Geoinformatsionnye tekhnologii i kosmicheskii monitoring (Ecology. Economics. Computer science. Collection of articles. In 3 V. V. 3. Geoinformation technologies and space monitoring), Rostov-on-Don: Southern Federal University Publishers, 2015, pp. 269–275 (in Russian).
- Matishov G. G., New data on bottom geomorphology of the sea of Azov, Doklady Earth Sciences, 2006, V. 409, No. 6, pp. 853–858, DOI: 10.1134/S1028334X06060031.
- Matishov G. G., Dashkevich L. V., Kirillova E. E., Cyclicity of climate in the Sea of Azov region: The Holocene and the current period (19th to 21st centuries), Doklady Earth Sciences, 2021, V. 498, No. 1, pp. 436–440, DOI: 10.1134/S1028334X21050093.
- Nesterov E. S., Maksimov A. A., Fedorenko A. V., Analysis of ice conditions on the Caspian Sea shipping routes, Gidrometeorologicheskie issledovaniya i prognozy, 2023, No. 4(390), pp. 105–117 (in Russian), DOI: 10.37162/2618-9631-2023-4-105-117.
- Obnaruzhenie po sputnikovym dannym opasnykh ledyanykh obrazovanii vblizi inzgenernykh obʺektov khozyaistvennoi deyatel’nosti na shel’fe Arkticheskikh morei: metodicheskoe posobie (Detection of dangerous ice features near the arctic shelf engineering constructions with the use of satellite imagery: A methodical manual), V. G. Smirnov (ed.), Saint Petersburg: AARI, 2017, 76 p. (in Russian).
- Platonova E. V., Bychkova I. A., Long-term observations of stamukhas in the East Siberian Sea using satellite data, Uchenye zapiski Rossiiskogo gosudarstvennogo gidrometeorologicheskogo universiteta, 2018, No. 53, pp. 103–112 (in Russian).
- Smirnov V. G., Bychkova I. A., Mikhal’tseva S. V., Platonova E. V., Satellite monitoring of icebergs in the Arctic Seas, Russian Meteorology and Hydrology, 2019, V. 44, No. 4, pp. 262–267, DOI: 10.3103/S1068373919040058.
- Loupian E. A., Bourtsev M. A., Proshin A. A. et al., Usage experience and capabilities of the VEGA-Science system, Remote Sensing, 2022, V. 14, No. 1, Article 77, 19 p., https://doi.org/10.3390/ rs14010077.
- Ogorodov S. A., Magaeva A. A., Maznev S. V. et al., Ice features of the Northern Caspian under sea level fluctuations and ice coverage variations, Geography, Environment, Sustainability, 2020, V. 13, No. 3, pp. 129–138, DOI: 10.24057/2071-9388-2020-77.
- Sigitov A., Kadranov Y., Vernyayev S., Analysis of stamukhi distribution in the Caspian Sea, Proc. 25 th Intern. Conf. “Port and Ocean Engineering under Arctic Conditions” (POAC 2019), 2019, 14 p.