ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, Vol. 22, No. 2, pp. 244-255

Interannual variability of bio-optical characteristics of the Barents and Kara seas

D.I. Glukhovets 1, 2 , I.V. Sahling 1 , S.V. Vazyulya 1 , S.V. Sheberstov 1 
1 Shirshov Institute of Oceanology RAS, Moscow, Russia
2 Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
Accepted: 07.03.2025
DOI: 10.21046/2070-7401-2025-22-2-244-255
The paper is devoted to the calculation of trends in the temporal variability of bio-optical characteristics in the subregions of the Barents Sea (chlorophyll a and coccolithophore concentrations for the period 1998–2024) and Kara Sea (chlorophyll a concentrations for the period 2003–2024) based on MODIS (Moderate Resolution Imaging Spectroradiometer) and SeaWiFS (Sea-Viewing Wide Field-of-View Sensor) satellite ocean color data processed using regional bio-optical algorithms. To expand the time series of bio-optical characteristics, the satellite ocean color data were combined. To assess the magnitude of climate change, the time series of sea surface temperature were also analyzed. When calculating the trends, the methods of harmonic analysis, singular spectrum analysis and quantile regression were used. Significant trends were recorded only for the sea surface temperature values. In the middle subregion of the Barents Sea, the periodogram of chlorophyll a concentration has two pronounced maxima corresponding to periods of 1 year and 0.5 year. Significant trends were obtained in quantiles including 10 % of the largest and smallest values of the chlorophyll a concentration series in the southwestern subregion of the Kara Sea. They amounted to 0.86•10-2 and –0.38•10-2 mg/m3 per year, respectively, with a confidence level of 75 %. The use of the singular spectrum analysis method made it possible to record fluctuations in the chlorophyll a concentration values in the middle subregion of the Barents Sea with a period of 6–7 years.
Keywords: satellite data, chlorophyll a concentration, coccolithophore blooms, interannual trends, singular spectrum analysis, quantile regression
Full text

References:

  1. Vazyulya S. V., Kopelevich O. V., Sheberstov S. V., Artemiev V. A., Satellite estimation of the coefficients of CDOM absorption and diffuse attenuation in the White and Kara Seas, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, V. 11, No. 4, pp. 31–41 (in Russian).
  2. Glukhovets D. I., Sheberstov S. V., Influence of phytoplankton on ocean albedo, Fundamental and Applied Hydrophysics, 2024, V. 17, No. 3, pp. 73–83 (in Russian), DOI: 10.59887/2073-6673.2024.17(3)-6.
  3. Golitsyn G. S., Vasil’ev A. A., Climate change and its impact on the frequency of extreme hydrometeorological events, Meteorologiya i gidrologiya, 2019, No. 11, pp. 9–12 (in Russian).
  4. Golyandina N. E., Metod “Gusenica”-SSA: Analiz vremennyh ryadov: uchebnoe posobie (Caterpillar-SSA method: Time series analysis: Teaching guide), Saint Petersburg, 2004, 76 p. (in Russian).
  5. Karalli P. G., Vazyulya S. V., Modification of the regional satellite algorithm for determining the concentration of chlorophyll-a in the Barents Sea, Trudy 11-i Vserossiiskoi konferentsii s mezhdunarodnym uchastiem “Sovremennye problemy optiki estestvennykh vod (ONW’2021) (Proc. 11th All-Russian Conf. with intern. participation “Current problems in optics of natural waters (ONW’2021)”), Saint Petersburg: LLC “Chimizdat”, 2021, pp. 234–239 (in Russian).
  6. Kopelevich O. V., Karalli P. G., Lokhov A. S. et al., Prospects for improving the accuracy of estimates of the parameters of coccolithophoride blooms in the Barents Sea from satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, V. 14, No. 7, pp. 267–279 (in Russian), DOI: 10.21046/2070-7401-2017-14-7-267-279.
  7. Kopelevich O. V., Sahling I. V., Vazyulya S. V., Glukhovets D. I., Sheberstov S. V., Burenkov V. I., Karalli P. G., Yushmanova A. V., Bioopticheskie kharakteristiki morei, omyvayushchikh berega zapadnoi poloviny Rossii, po dannym sputnikovykh skanerov tsveta 1998–2017 gg. (Bio-optical characteristics of the seas, surrounding the western part of Russia, from data of the satellite ocean color scanners of 1998–2017), Moscow: OOO “VASH FORMAT”, 2018, 140 p. (in Russian).
  8. Sheberstov S. V., System for batch processing of oceanographic satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, V. 12, No. 6, pp. 154–161 (in Russian).
  9. Sheberstov S. V., Kopelevich O. V., Lukyanova E. A., Analysis of inter-annual trends of sea surface temperature and chlorophyll concentration in the Atlantic Ocean from satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, V. 8, No. 4, pp. 274–282 (in Russian).
  10. Beaulieu C., Henson S. A., Sarmiento J. L. et al., Factors challenging our ability to detect long-term trends in ocean chlorophyll, Biogeosciences, 2013, V. 10, Iss. 4, pp. 2711–2724, DOI: 10.5194/bg-10-2711-2013.
  11. Cael B. B., Bisson K., Boss E. et al., Global climate-change trends detected in indicators of ocean ecology, Nature, 2023, V. 619, Iss. 7970, pp. 551–554, DOI: 10.1038/s41586-023-06321-z.
  12. Demidov A. B., Gagarin V. I., Sheberstov S. V., Impact of regional warming on primary production of the Kara Sea in the last two decades (2002–2021), Oceanology, 2023, V. 63, No. 2, pp. 195–211, DOI: 10.1134/S0001437023020029.
  13. Dvoretsky V. G., Vodopianova V. V., Bulavina A. S., Effects of climate change on chlorophyll a in the Barents Sea: A long-term assessment, Biology, 2023, V. 12, No. 1, Article 119, DOI: 10.3390/biology12010119.
  14. Elsner J. B., Tsonis A. A., Singular spectrum analysis: A new tool in time series analysis, New York; London: Plenum Press, 1996, 164 p.
  15. Glukhovets D., Kopelevich O., Yushmanova A. et al., Evaluation of the CDOM absorption coefficient in the Arctic seas based on Sentinel-3 OLCI data, Remote Sensing, 2020, V. 12, No. 19, Article 3210, DOI: 10.3390/rs12193210.
  16. Glukhovets D., Sheberstov S., Vazyulya S. et al., Influence of the accuracy of chlorophyll-retrieval algorithms on the estimation of solar radiation absorbed in the Barents Sea, Remote Sensing, 2022, V. 14, No. 19, Article 4995, DOI: 10.3390/rs14194995.
  17. Kulk G., Platt T., Dingle J. et al., Primary production, an index of climate change in the ocean: Satellite-based estimates over two decades, Remote Sensing, 2020, V. 12, No. 5, Article 826, DOI: 10.3390/rs12050826.
  18. Serra‐Pompei C., Dutkiewicz S., Phytoplankton Chlorophyll trends in the Arctic at the local, regional, and pan-Arctic scales (1998–2022), Geophysical Research Letters, 2024, V. 51, No. 23, Article e2024GL110454, DOI: 10.1029/2024GL110454.
  19. Siegel D. A., DeVries T., Cetinić I., Bisson K. M., Quantifying the ocean’s biological pump and its carbon cycle impacts on global scales, Annu. Review of Marine Science, 2023, V. 15, pp. 329–356, DOI: 10.1146/annurev-marine-040722-115226.
  20. Vazyulya S. V., Sahling I. V., Glukhovets D. I., Demidov A. B., Regional algorithms for chlorophyll concentration estimation in the Kara Sea from MODIS ocean color data, Atmospheric and Oceanic Optics, 2024, V. 37, pp. S135–S143, DOI: 10.1134/S1024856024701641.
  21. Zhai D., Beaulieu C., Kudela R. M., Long-term trends in the distribution of ocean chlorophyll, Geophysical Research Letters, 2024, V. 51, No. 7, Article e2023GL106577, DOI: 10.1029/2023GL106577.