ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, Vol. 22, No. 2, pp. 267-281

Evolution of the ghost island (Kumani Bank/Island) in the southwestern Caspian Sea

M.I. Mityagina 1 , A.G. Kostianoy 2, 3, 4 , M.D. Kravchishina 2 
1 Space Research Institute RAS, Moscow, Russia
2 Shirshov Institute of Oceanology RAS, Moscow, Russia
3 Moscow Witte University, Moscow, Russia
4 Maykop State Technological University, Maykop, Russia
Accepted: 17.03.2025
DOI: 10.21046/2070-7401-2025-22-2-267-281
The paper presents results of satellite monitoring of the evolution of the ghost island (Kumani Bank/Island) located in the southwestern part of the Caspian Sea. The monitoring was carried out from 1993 to 2025 and was based on data from multispectral sensors of the optical range — MSI (Multispectral Instrument) of the Sentinel-2A, -2B satellites, scanning radiometers TM (Thematic Mapper) of the Landsat-5 satellite, ETM+ (Enhanced Thematic Mapper Plus) of the Landsat-7 satellite, OLI (Operational Land Imager) and OLI-2 of Landsat-8, -9 — as well as data from the C-SAR synthetic aperture radar of the Sentinel-1A, -1B satellites. We used satellite data with high spatial resolution of 10–30 m which allowed us to detect the time of appearance and disappearance of the island on the sea surface, as well as reveal its exact dimensions. Since 1861, the island has periodically appeared as a result of mud volcano activity, existed for several months and then disappeared, washed away by currents. Using satellite data, we considered the main stages of changes in underwater mud volcanism in the Kumani Bank area over more than thirty years: relatively long periods of quiet gryphon activity and then a sporadic activation with a massive release of a gas-water-mud mixture — a paroxysmal phase of the eruption accompanied by the spread of clearly expressed tongue-shaped plumes from the bank/island. We found out that in the Kumani Bank area there are no signs of seabed oil seepages, since no oil films are observed at the water surface in the sea area around it, unlike the water area lying to the south and characterized by a constant discharge of oil fluids at the bottom. In the paper, we discuss various mechanisms for the appearance and disappearance of the island on the sea surface, including changes in the level of the Caspian Sea.
Keywords: Caspian Sea, Kumani Bank/Island, mud volcanoes, islands, satellite images, satellite monitoring, satellite radar, visible range data, C-SAR, Sentinel-1, MSI Sentinel-2, OLI Landsat-8, OLI-2 Landsat-9
Full text

References:

  1. Aliev A. A., Mud volcanoes of the Caspian Sea, Geologiya i poleznye iskopaemye Mirovogo okeana, 2014, No. 1, pp. 33–44 (in Russian).
  2. Bezrukov P. L., Lisitsyn A. P., Classification of sediments of modern marine water bodies, Trudy Instituta okeanologii, 1960, V. 32, pp. 3–14 (in Russian).
  3. Bruevich S. V., Problemy khimii morya (Problems of sea chemistry), Moscow: Nauka, 1978, 335 p. (in Russian).
  4. Geologiya SSSR. T. 47. Azerbaidzhanskaya SSR. Geologicheskoe opisanie (Geology of the USSR. V. 47. Azerbaijan SSR. Geological description), Moscow: Nedra, 1972, 520 p. (in Russian).
  5. Ginzburg A. I., Kostianoy A. G., Lebedev S. A., Climatic changes in the hydrometeorological parameters of the Caspian Sea (1980–2020), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, V. 18, No. 5, pp. 277–291 (in Russian), DOI: 10.21046/2070-7401-2021-18-5-277-291.
  6. Ginsburg G. D., Gramberg I. S., Guliev I. S., Guseinov R. A., Dadashev A. A., Ivanov V. L., Krotov A. G., Muradov C. S., Soloviev V. A., Telepnev E. V., Subsea mud volcano type of gas hydrates accumulation, Doklady Akademii nauk SSSR, 1988, V. 300, No. 2, pp. 416–418 (in Russian).
  7. Gorin V. A., Caspian Sea level fluctuations and mud volcanism, Doklady Akademii nauk Azerbaidzhanskoi SSR, 1952, V. 8, No. 3, pp. 119–121 (in Russian).
  8. Zonn I. S., Kostianoy A. G., Zhiltsov S. S., Semenov A. V., Kaspiiskii region: ehntsiklopediya. V 4 t. T. 4. Ehntsiklopediya ot A do Ya (Caspian region: encyclopedia. In 4 v. V. 4. Encyclopedia from A to Z), Moscow: Moskovskii universitet imeni S. Yu. Vitte, 2019, 683 p. (in Russian).
  9. Kopelevich O. V., Burenkov V. I., Vazyulya S. V., Sheberstov S. V., Problems of detection of coccolithophore blooms from satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, V. 9, No. 5, pp. 241–250 (in Russian).
  10. Kumani, In: Geografichesko-statisticheskii slovar’ Rossiiskoi imperii. V 5 t. (Geographical and statistical dictionary of the Russian Empire. In 5 v.), P. Semenov (comp.), V. 2, Saint Petersburg, 1865, pp. 834–835 (in Russian).
  11. Kumani, In: Ehntsiklopedicheskii slovar’ Brokgauza i Efrona. V 86 t (Brockhaus and Efron Encyclopedic Dictionary. In 86 v.), V. 17, Saint Petersburg, 1896, p. 9 (in Russian).
  12. Kuprin P. N., Bagirov V. I., Towards understanding the conditions of formation of sediments of the Middle and Southern Caspian, In: Kompleksnye issledovaniya Kaspiiskogo morya (Comprehensive research of the Caspian Sea), V. 2, Moscow: MGU, 1972, pp. 91–114 (in Russian).
  13. Lavrova O. Yu., Mityagina M. I., Kostianoy A. G., Sputnikovye metody vyyavleniya i monitoringa zon ehkologicheskogo riska morskikh akvatorii (Satellite methods for detecting and monitoring marine zones of ecological risk), Moscow: IKI RAS, 2016, 334 p. (in Russian).
  14. Lavrova O. Yu., Mityagina M. I., Uvarov I. A., Loupian E. A., Current capabilities and experience of using the See the Sea information system for studying and monitoring phenomena and processes on the sea surface, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, V. 16, No. 3, pp. 266–287 (in Russian), DOI: 10.21046/2070-7401-2019-16-3-266-287.
  15. Lavrova O. Yu., Uvarov I. A., Krasheninnikova Yu. S., Satellite observations of the eruption of a mud volcano on the Dashly Island in the Caspian Sea on July 4, 2021, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, V. 18, No. 3, pp. 332–336 (in Russian), DOI: 10.21046/2070-7401-2021-18-3-332-336.
  16. Lavrova O. Yu., Mityagina M. I., Kostianoy A. G., Sputnikovye metody issledovaniya izmenchivosti Kaspiiskogo morya (Satellite methods in the study of the Caspian Sea variability), Moscow: IKI RAS, 2022, 250 p. (in Russian).
  17. Lavrushin V. Yu., Kuleshov V. N., Oolites of the Caspian Sea (patterns of distribution, isotope-geochemical features), Litologiya i poleznye iskopaemye, 1999, No. 6, pp. 596–618 (in Russian).
  18. Lavrushin V. Yu., Aliev Ad. A., Pokrovsky B. G. et al., Trace element and isotopic features of carbonates from the mud volcano ejecta from the Kura Depression (Azerbaijan), Litologiya i poleznye iskopaemye, 2019, No. 3, pp. 211–233 (in Russian), DOI: 10.31857/S0024-497X20193211-233.
  19. Lein A. Yu., Lisitsyn A. P., Kravchishina M. D., Kozina N. V., Dara O. M., Modern sedimentation: sedimentogenesis and early diagenesis, In: Sistema Kaspiiskogo morya (Caspian Sea System), A. P. Lisitsyn (ed.), Moscow: Nauchnyi mir, 2016, pp. 303–399 (in Russian).
  20. Medvedev I. P., Kulikov E. A., Rabinovich A. B., Tidal oscillations in the Caspian Sea, Oceanology, 2017, V. 57, No. 3, pp. 360–375, DOI: 10.1134/S0001437017020138.
  21. Mityagina M. I., Lavrova O. Yu., Abnormal winter bloom of coccolithophores in the eastern Black Sea revealed by satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, V. 16, No. 1, pp. 248–253 (in Russian), DOI: 10.21046/2070-7401-2019-16-1-248-253.
  22. Yakubov A., Ali-Zade A., Zeinalov M., Gryazevye vulkany Azerbaidzhanskoi SSR: Atlas (Mud volcanoes of the Azerbaijan SSR: an Atlas), Baku: Izd. Akademii nauk Azerbaidzhanskoi SSR, 1971, 256 p. (in Russian).
  23. Aliyev Ad. A., Quliyev I. S., Rahmanov R. R., Catalogue of mud volcanoes eruptions of Azerbaijan (1810–2007), Baku: Nafta-Press, 2009, 106 p.
  24. Ghaderi D., Rahbani M., Mud volcano as a feature of emergence in Caspian Sea, Oceanologia, 2022, V. 64, No. 3, pp. 503–513, https://doi.org/10.1016/j.oceano.2022.03.006.
  25. Ginzburg A. I., Kostianoy A. G., Gholamalifard M. et al., Ecologically and biologically significant marine protected areas in the Caspian Sea: A review, Ecologica Montenegrina, 2024, V. 76, pp. 85-115, https://doi.org/10.37828/em.2024.76.6.
  26. Komatsu G., Feyzullayev A. A., Geomorphology of subaerial mud volcanoes in Azerbaijan: Issues about edifice construction and degradation, Geomorphology, 2024, V. 463, Article 109352, https://doi.org/10.1016/j.geomorph.2024.109352.
  27. Kostianoy A. G., Pesic V., Advances in environmental monitoring of the Caspian Sea, Ecologica Montenegrina, 2024, V. 76, pp. 201-210, https://doi.org/10.37828/em.2024.76.12.
  28. Mityagina M. I., Kostianoy A. G., Areas of heavy permanent oil pollution of the Caspian Sea surface identified by use of satellite remote sensing, Ecologica Montenegrina, 2024, V. 76, pp. 49-62, https://doi.org/10.37828/em.2024.76.3.
  29. Mityagina M., Lavrova O., Satellite survey of inner seas: Oil pollution in the Black and Caspian Seas, Remote Sensing, 2016, V. 8, pp. 875–899, https://doi.org/10.3390/rs8100875.
  30. Mityagina M. I., Lavrova O. Yu., Kostianoy A. G., Main pattern of the Caspian Sea surface oil pollution revealed by satellite data, Ecologica Montenegrina, 2019, V. 25, pp. 91-105, https://doi.org/10.37828/em.2019.25.9.
  31. Nechad B., Ruddick K., Schroeder T. et al., CoastColour Round Robin datasets: a database to evaluate the performance of algorithms for the retrieval of water quality parameters in coastal waters, Earth System Science Data, 2015, V. 7, No. 7, pp. 319–348, https://doi.org/10.5194/essd-7-319-2015.
  32. Zonn I. S., Kostianoy A. G., Kosarev A. N., Glantz M., The Caspian Sea Encyclopedia, Berlin; Heidelberg: Springer-Verlag, 2010, 527 p., https://doi.org/10.1007/978-3-642-11524-0.