ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2025, Vol. 22, No. 1, pp. 148-161

Analysis of convergence of different spatial resolution time series of satellite imagery of Bolshezemelskaya tundra

V.V. Elsakov 1 
1 Institute of Biology, Komi Science Centre UrB RAS, Syktyvkar, Russia
Accepted: 14.01.2025
DOI: 10.21046/2070-7401-2025-22-1-148-161
The convergence of averaged maximum values and trends of interannual changes in the NDVI (Normalized Difference Vegetation Index) derived from satellite imagery of GIMMS (3G) (Global Inventory Modeling and Mapping Studies), SPOT-VGT (S10) and MODIS (MOD13Q collection 6.1) series for the time period of 2000–2003 has been analyzed for the territory of Bolshezemelskaya tundra (about 102 thousand km2). The compared satellite images had differences in spatial and spectral resolution, intervals of time composite generation. Comparisons were made by generalizing an image of greater spatial resolution to a less detailed image. The considered imagery demonstrated low level of convergence for averaged interannual maximum NDVI values. The GIMMS (3G) images significantly overestimated the index values (on average by 10–15 % compared to MODIS and by 20–30 % to SPOT-VGT), and low correlation coefficients (r) were demonstrated in the pairs of comparison. The degree of agreement between mean NDVI distributions increased with image resolution and narrowing of the spectral ranges. The highest correlation was observed between MODIS and SPOT-VGT NDVI data (r = 0.76, p = 0.05). The most detailed MODIS images demonstrated the greatest changes in the interannual linear trend of changes (β) calculated for maximum annual NDVI values. A decrease in image spatial resolution was associated with a decrease in β quantity and variability. All images showed changes related to higher productivity in the area of the southern ecotone of low shrub tundra. The compared pairs of images had low correlation coefficients for β indicator. The highest correlation was observed for MODIS and SPOT-VGT (r = 0.40 at p = 0.05). The best ability to detect trends in vegetation was noted in MODIS time series.
Keywords: composites of satellite images, NDVI, vegetation changes, Bolshezemelskaya tundra
Full text

References:

  1. Anisimov O. A., Zhiltcova Ye. L., Razzhivin V. Yu., Predictive modeling of plant productivity in the Russian Arctic using satellite data, Izvestiya, Atmospheric and Oceanic Physics, 2015, V. 51, pp. 1051–1059, DOI: 10.1134/S0001433815090042.
  2. Bartalev S. A., Egorov V. A., Ershov D. V., Isaev A. S., Loupian E. A., Plotnikov D. E., Uvarov I. A., Mapping of Russia’s vegetation cover using MODIS satellite spectroradiometer data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, V. 8, No. 4, pp. 285–302 (in Russian).
  3. Belonovskaya E. A., Tishkov A. A., Vaisfel’d M. A. et al., “Greening” of the Russian Arctic and the modern trends of transformation of its biota, Izvestiya Rossiiskoi akademii nauk. Ser. Geograficheskaya, 2016, No. 3, pp. 28–39 (in Russian), DOI: 10.15356/0373-2444-2016-3-28-39.
  4. Elsakov V. V., Spatial and interannual heterogeneity of changes in the vegetation of Eurasian tundra: Analysis of 2000–2016 MODIS data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, V. 14, No. 6, pp. 56–72 (in Russian), DOI: 10.21046/2070-7401-2017-14-6-56-72.
  5. Elsakov V. V., Shchanov V. M., Current changes in vegetation cover of Timan tundra reindeer pastures from analysis of satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, V. 16, No. 2, pp. 128–142 (in Russian), DOI: 10.21046/2070-7401-2019-16-2-128-142.
  6. Elsakov V. V., Kuliugina E. E., Tshanov V. M., Trends of vegetation cover changes of the Yugorsky peninsula in the last decades: Comparison of remote and field studies, Geobotanical mapping, 2013, pp. 93–111 (in Russian), DOI: 10.31111/geobotmap/2013.93.
  7. Zonal’nye (na ravninakh) i poyasnye (v gorakh) tipy rastitel’nosti. M 1:12 000 000 (Zonal (on the plains) and belt (in the mountains) vegetation types. M 1:12 000 000), Map of vegetation of the European part of the USSR. Scale 1:2 500 000, T. I. Isachenko, E. M. Lavrenko (eds.), GUGK under the USSR Council of Ministers, Moscow, 1979.
  8. Simonova K. I., Effects of snowmelt on seasonal and interannual vegetation dynamics in the Lena Delta, Sovremennye problemy distantsionnogo zondirovaniya zemli iz kosmosa, 2023, V. 20, No. 5, pp. 205–216 (in Russian), DOI: 10.21046/2070-7401-2023-20-5-205-216.
  9. Sherstyukov A. B., Izmeneniya klimata i ikh posledstviya v zone mnogoletnei merzloty Rossii (Climate change and its consequences in the permafrost zone of Russia), Obninsk: GU “VNIIGMI-MTsD”, 2009, 127 p. (in Russian).
  10. Berner L. T., Massey R., Jantz P. et al., Summer warming explains widespread but not uniform greening in the Arctic tundra biome, Nature Communications, 2020, No. 11, Article 4621, 12 p., DOI: 10.1038/s41467-020-18479-5.
  11. Beurs K. M., Henebry G. M., Northern annular mode effects on the land surface phenologies of Northern Eurasia, J. Climate, 2008, V. 21, pp. 4257–4279, DOI: 10.1175/2008JCLI2074.1.
  12. Beurs K. M., Henebry G. M., A land surface phenology assessment of the northern polar regions using MODIS reflectance time series, Canadian J. Remote Sensing, 2010, V. 36, pp. 87–110, DOI: 10.5589/m10-021.
  13. Blok D., Schaepman-Strub G., Bartholomeus H. et al., The response of Arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature, Environmental Research Letters, 2011, V. 6, No. 3, Article 035502, 9 p., DOI: 10.1088/1748-9326/6/3/035502.
  14. Detsch F., Otte I., Appelhans T., Nauss T., A comparative study of cross-product NDVI dynamics in the Kilimanjaro region — a matter of sensor, degradation calibration, and significance, Remote Sensing, 2016, V. 8, No. 2, Article 159, 18 p., DOI: 10.3390/rs8020159.
  15. Forbes B. C., Macias-Fauria M., Zetterberg P. I., Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows, Global Change Biology, 2010, V. 16, No. 5, pp. 1542–1554, DOI: 10.1111/j.1365-2486.2009.02047.
  16. Fraser R. H., Lantz T. C., Olthof I. et al., Warming-induced shrub expansion and lichen decline in the western Canadian Arctic, Ecosystems, 2014, V. 17, No. 7, pp. 1151–1168, DOI: 10.1007/s10021-014-9783-3.
  17. Frost G. V., Bhatt U. B., Macander M. J. et al., Is Alaska’s Yukon–Kuskokwim Delta greening or browning? Resolving mixed signals of tundra vegetation dynamics and drivers in the maritime Arctic, Earth interactions, 2021, V. 25, pp. 76–93, DOI: 10.1175/EI-D-20-0025.1.
  18. Gallo K., Ji L., Reed B. et al., Multi-platform comparisons of MODIS and AVHRR normalized difference vegetation index data, Remote Sensing of Environment, 2005, V. 99, Iss. 3, pp. 221–231, DOI: 10.1016/j.rse.2005.08.014.
  19. Goetz S. J., Bunn A. G., Fiske G. J., Houghton R. A., Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance, Proc. National Academy of Sciences, 2005, V. 102, No. 38, pp. 13521–13525, DOI: 10.1073/pnas.0506179102.
  20. Guay K. C., Beck P. S.A., Berner L. T. et al., Vegetation productivity patterns at high northern latitudes: a multi-sensor satellite data assessment, Global Change Biology, 2014, V. 20, No. 10, pp. 3147–3158, DOI: 10.1111/gcb.12647.
  21. Hutich C., Herold M., Schmullius C. et al., Indicators of Northern Eurasia’s land-cover change trends from SPOT-Vegetation time-series analysis 1998–2005, Intern. J. Remote Sensing, 2007, V. 28, pp. 4199–4206, DOI: 10.1080/01431160701442054.
  22. Jia G. J., Epstein H. E., Walker D. A., Greening of Arctic Alaska, 1981–2001, Geophysical Research Letters, 2003, V. 30, No. 20, Article 2067, 4 p., DOI: 10.1029/2003GL018268.
  23. Li M., Cao S, Zhu Z. et al., Spatiotemporally consistent global dataset of the GIMMS Normalized Difference Vegetation Index (PKU GIMMS NDVI) from 1982 to 2022, Earth System Science Data, 2023, V. 15, pp. 4181–4203, DOI: 10.5194/essd-15-4181-2023.
  24. Lin X., Niu J., Berndtsson R. et al., NDVI dynamics and its response to climate change and reforestation in northern China, Remote Sensing, 2020, V. 12, No. 24, Article 4138, 16 p., DOI: 10.3390/rs12244138.
  25. Liu C., Huang H., Liu C. et al., Comparative evaluation of vegetation greenness trends over circumpolar Arctic tundra using multi-sensors satellite datasets, Intern. J. Digital Earth, 2024, V. 17, No. 1, Article 2328823, 20 p., DOI: 10.1080/17538947.2024.2328823.
  26. Picard G., Quegan S., Delbart N. et al., Bud-burst modelling in Siberia and its impact on quantifying the carbon budget, Global Change Biology, 2005, V. 11, No. 12, pp. 2164–2176, DOI: 10.1111/j.1365-2486.2005.01055.x.
  27. Raynolds M. K., Walker D. A., Maier H. A., NDVI patterns and phytomass distribution in the circumpolar Arctic, Remote Sensing of Environment, 2006, V. 102, Iss. 3–4, pp. 271–281, DOI: 10.1016/j.rse.2006.02.016.
  28. Raynolds M. K., Walker D. A., Epstein H. E. et al., A new estimate of tundra-biome phytomass from trans-Arctic field data and AVHRR NDVI, Remote Sensing Letters, 2012, V. 3, No. 5, pp. 403–411, DOI: 10.1080/01431161.2011.609188.
  29. Robin J., Dubayah R., Sparrow E. et al., Monitoring start of season in Alaska with GLOBE, AVHRR, and MODIS data, J. Geophysical Research. Biogeosciences, 2007, V. 113, Article G01017, 10 p., DOI: 10.1029/2007JG000407.
  30. Sakai H., Suzuki R., Kondoh A., Recent signal of vegetation change in Siberia using satellite data, J. Japan Soc. Hydrology and Water Resources, 2008, V. 21, pp. 50–56, DOI: 10.3178/jjshwr.21.50.
  31. Tucker C. J., Pinzon J. E., Brown M. E. et al., Anextended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data, Intern. J. Remote Sensing, 2005, V. 26, No. 20, pp. 4485–4498, DOI: 10.1080/01431160500168686.
  32. Walker D. A., Epstein H. E., Jia J. G. et al., Phytomass, LAI, and NDVI in northern Alaska: Relationships to summer warmth, soil pH, plant functional types, and extrapolation to the circumpolar Arctic, J. Geophysical Research. Atmospheres, 2003, V. 108, Iss. D2, Article 8169, DOI: 10.1029/2001JD000986.
  33. Walker D. A., Raynolds M. K., Fred J. A., The Circumpolar Arctic vegetation map, J. Vegetation Science, 2005, V. 16, pp. 267–282, DOI: 10.1111/j.1654-1103.2005.tb02365.x.
  34. White M. A., Beurs K. M., Didan K., Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006, Global Change Biology, 2009, V. 15, No. 10, pp. 2335–2359, DOI: 10.1111/j.1365-2486.2009.01910.x.
  35. Zeng H., Jia G., Epstein H., Recent changes in phenology over the northern high latitudes detected from multi-satellite data, Environmental Research Letters, 2011, V. 6, No. 4, Article 045508, 11 p., DOI: 10.1088/1748-9326/6/4/045508.
  36. Zhao J., Ding Y., Yang J., Suitability analysis and evaluation of GIMMS NDVI3g product in plateau region, IOP Conf. Ser. Earth and Environmental Science. 3 rd Intern. Forum on Geoscience and Oceanography, 2021, V. 734, Article 012007, 7 p., DOI: 10.1088/1755-1315/734/1/012007.